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Abstract 

Neural representation refers to the brain activity that stands in for one’s cognitive 

experience, and in cognitive neuroscience, the principal method to studying neural 

representations is representational similarity analysis (RSA). The classic RSA (cRSA) approach 

examines the overall quality of representations across numerous items by assessing the 

correspondence between two representational similarity matrices (RSMs): one based on a 

theoretical model of stimulus similarity and the other based on similarity in measured neural 

data. However, because cRSA cannot model representation at the level of individual trials, it is 

fundamentally limited in its ability to assess subject-, stimulus-, and trial-level variances that all 

influence representation. Here, we formally introduce trial-level RSA (tRSA), an analytical 

framework that estimates the strength of neural representation for singular experimental trials 

and evaluates hypotheses using multi-level models. First, we verified the correspondence 

between tRSA and cRSA in quantifying the overall representation strength across all trials. 

Second, we compared the statistical inferences drawn from both approaches using simulated 

data that reflected a wide range of scenarios. Compared to cRSA, the multi-level framework of 

tRSA was both more theoretically appropriate and significantly sensitive to true effects. Third, 

using real fMRI datasets, we further demonstrated several issues with cRSA, to which tRSA 

was more robust. Finally, we presented some novel findings of neural representations that could 

only be assessed with tRSA and not cRSA. In summary, tRSA proves to be a robust and 

versatile analytical approach for cognitive neuroscience and beyond. 

  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2025. ; https://doi.org/10.1101/2025.03.27.645646doi: bioRxiv preprint 

https://doi.org/10.1101/2025.03.27.645646
http://creativecommons.org/licenses/by/4.0/


3 

Introduction 

Since the start of any systematic examination of the mind, the concept of representation has 

provided a link between the external world and the content of mental life (Brentano, 1874). 

Current perspectives in cognitive science have defined representations as brain activity patterns 

that convey some behaviorally relevant content, which could be sensory perception, memory, 

concept knowledge, or social relations (Kriegeskorte & Diedrichsen, 2019). One of the central 

approaches for evaluating information represented in the brain is representational similarity 

analysis (RSA), an analytical approach that queries the representational geometry of the brain 

in terms of its alignment with the representational geometry of some cognitive model 

(Kriegeskorte et al., 2008; Kriegeskorte & Kievit, 2013). The RSA approach has demonstrated 

utility across many domains of cognitive neuroscience research, such as visual perception 

(Jozranjbar et al., 2023), episodic memory (Xue, 2018), concept knowledge (Bauer & Just, 

2019), social information (Freeman et al., 2018), and cognitive control (Freund, Etzel, et al., 

2021). Despite its proven success, we argue that the classic RSA approach, henceforth cRSA, 

has several limitations in efficacy across various experimental scenarios, due to its inability to 

reflect the proper multi-level variance structure within the data. In this paper, we present an 

advancement termed trial-level RSA, or tRSA.  

In cognitive neuroscience, cRSA is most commonly implemented to evaluate the 

representational geometry of a neural system by comparing it to some model of cognition. A 

typical implementation of cRSA involves four main steps (see Figure 1). First, brain activity 

responses to a series of N trials are compared against each other (typically using correlation 

distance, or 1 - Pearson’s r) to form an N×N representational similarity matrix, or RSMbrain. 

Second, a hypothesis of how this brain system ought to respond — a cognitive model — is 

created in the form of a model RSM, or RSMmodel. This RSMmodel can be created based on 

objective features of the stimuli (e.g., image brightness, category membership), subject ratings 

or behaviors (e.g., pleasantness, memory success), or outputs from computational models (e.g., 

neuron activations in artificial neural networks, semantic embeddings from large language 

models). Third, values from the lower (or equivalently, upper) triangular parts of both RSMbrain 

and RSMmodel are retrieved, vectorized, and compared. This RSMbrain-RSMmodel comparison 

focuses on the similarity between the two representational geometries, which is typically 

measured by Spearman’s rank correlation (Kriegeskorte et al., 2008) but alternatives have also 

been proposed (Bobadilla-Suarez et al., 2020; Diedrichsen et al., 2021; Walther et al., 2016). 

This similarity measure is referred to as a first-level RSA score or representational strength. 
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Fourth, once the above procedures are completed for each subject and condition, the first-level 

measures of representation are submitted to a second-level hypothesis testing for statistical 

inferences — often using general linear models such as t-test and ANOVA. One notable feature 

of cRSA is that the representational geometries are compared to one another in their entireties 

in step 3, and this step produces as a single measure of representational strength collapsing 

across all experimental trials. In other words, cRSA estimates cannot be interpreted for specific 

experimental trials or stimuli; rather, they only reflect how strongly the studied neural system 

represents for the entire set of items, limiting the realm of possible research questions. Most 

critically, as trial-level information is collapsed in cRSA, multiple sources of variance become 

intractable, yet these ignored variances could render subsequent second-level analyses 

susceptible to erroneous inferences.  

 

Figure 1. Representational Similarity Analysis (RSA). Steps for classic RSA (cRSA) and trial-level RSA (tRSA). 
A) Neural Representational Similarity Matrix (RSMbrain) is generated by correlating multi-voxel activity patterns 
across all trials within a Region of Interest (ROI), reflecting similarity between neural responses. B) Model 
Representational Similarity Matrix (RSMmodel) is constructed by correlating of-interest stimulus properties across all 
trials. C) First-Level cRSA (top) and tRSA (bottom). For cRSA, the lower triangular parts (black outline) of RSMbrain 
and RSMmodel are compared, producing a single summary statistic (e.g., Spearman’s rho) across all trials. For 
tRSA, representational similarity values from RSMbrain and RSMmodel for the same trial (e.g., tennis ball; red dashed 
outline) are compared, producing a single representational strength estimate for that trial. D) Second-Level 
analysis for cRSA and tRSA. In cRSA, subject-level r values are submitted to a one-sample t-test to assess 
whether the values reliably exceed zero. In tRSA, a linear random effects model with random effects for subject 
and stimulus is fit, and hypothesis testing determines whether the estimated intercept is significantly greater than 

zero. 
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A behavioral or neural measure in a single experimental trial consists of meaningful 

variances from four distinct sources: condition-level (experimental task manipulations such as 

cognitive load and emotional valence), subject-level (individual differences in perceptual acuity, 

prior knowledge, or other cognitive faculties), stimulus-level (features of the stimuli with 

behavioral or neural relevance), and trial-level (physiological and nuisance variables affecting 

measurement). To explain the variance in this measure, the appropriate statistical model should 

reflect said multi-level variance structure. However, the cRSA approach only does so 

imperfectly with three major limitations, which we detail below.   

First, the heterogeneity of subject- and/or condition-level variances in real datasets 

adversely impacts the sensitivity and reliability of cRSA. One of the fundamental assumptions of 

general linear models (step 4 of cRSA; see Figure 1D) is homoscedasticity or homogeneity of 

variance — that is, all residuals should have equal variance. This assumption is often violated in 

real datasets. The variance of first-level cRSA scores depends largely on the number of 

observations (see Figure 2), but this trial count can be highly variable across subjects or 

conditions, resulting in heteroscedasticity. This issue is prevalent in studies where trials are 

selected and grouped based on subject behavior, such as in memory or attention tasks. In those 

cases, treating cRSA scores obtained from 100 trials and those obtained from 20 trials as 

having equal variance would violate the homoscedasticity assumption and lead to unreliable 

results. One suggested remedy of the issue is equating the number of trials via random 

subsampling conditions with more trials (Dimsdale-Zucker & Ranganath, 2018); however, this 

solution comes with the cost of not making full use of the rich information from those low-

variance conditions and may not be ideal when the number of trials is highly unbalanced.  

Second, cRSA is unable to model stimulus-level variance. Most studies present subjects 

with a fixed set of stimuli, which are supposedly samples representative of some broader 

category. In this case, using cRSA brings about two issues. For one, stimuli can vary in a wealth 

of properties. Object images, for example, vary in terms of image complexity, concept 

frequency, and memorability, all of which can affect both behavior and neural activity in 

important and systematic ways (Bainbridge et al., 2017; Hovhannisyan et al., 2021; Naspi et al., 

2021). To mitigate this issue, one might explicitly manipulate the distribution of relevant stimulus 

properties or cross-validate cRSA results on subsets of stimuli (Freund, Bugg, et al., 2021). 

Nevertheless, neither solution could address the second issue, which is the fact that the same 

stimuli are presented to multiple subjects. To properly address this stimulus-level dependence in 

the data and generalize the results beyond the fixed stimulus set, one must model stimulus 

identity as random effects, for the very same reason subjects are specified as random effects 
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(Chen et al., 2021; Yarkoni, 2022). However, this solution is not accessible for cRSA since its 

current implementation stipulates the collapsing of stimulus information across trials (step 3 of 

cRSA; see Figure 1C).  

 

Figure 2. Trial count influences the reliability of correlations. The spread of correlation estimates (y-axis) 
varies nonlinearly with the number of observations, or trial count (x-axis). Trial count ranges from 10 to 200 with 
increments of 1. For each trial count, observations were drawn from a bivariate normal distribution with the given 
ground truth Pearson correlation, and their empirical Pearson correlation coefficient was computed. Ten random 
samples were drawn for each trial count and ground truth combination. Both ground truth and estimated values in 
the scatter plots are Fisher-transformed (z). 

Third, cRSA is not well-suited for testing the influence of stimulus-level or trial-level 

properties on neural representations. For example, it may be desirable to explicitly test or 

control for how certain stimulus-level properties (e.g., memorability) or trial-level recordings 

(e.g., cardiac cycle, pupil dilation) affect neural representations (Critchley & Garfinkel, 2018; van 

der Wel & van Steenbergen, 2018). One strategy to analyze the effects of those stimulus- or 

trial-level continuous variables is to discretize them into categories (e.g., low vs. medium vs. 

high); however, discretization inevitably leads to a loss of information, reduced statistical power, 

and potentially misleading outcomes (Cohen, 1983; MacCallum et al., 2002). Alternatively, one 

could construct additional RSMs for the covariates and then compare all RSMs using a partial 

correlation or multiple regression framework, yet the statistical interpretations become much 

less straightforward after the conversion. For instance, even though a univariate random 

variable 𝑣, such as pleasantness ratings, can be conveniently converted to an RSM using 

pairwise distance metrics (Weaverdyck et al., 2020), the very same RSM would also be derived 

from the opposite random variable −𝑣, leaving uncertain of the directionality of any findings with 

the RSM (see also Bainbridge & Rissman, 2018).  
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Here, we propose an original method for evaluating the neural representation of 

information at the level of individual experimental trials: trial-level RSA or tRSA. In this 

approach, instead of deriving a single measure of the similarity between RSMmodel and RSMbrain, 

we compute a series of similarity measures on a trial-by-trial (row-by-row or column-by-column) 

basis (Davis et al., 2021). For instance, the representational strength in the first trial is 

calculated as the similarity between the first row of RSMmodel and the first row of RSMbrain (see 

Figure 1C). We argue that our novel tRSA approach addresses all of the aforementioned 

limitations of cRSA: it can properly account for the multi-level variance structure in the data, 

affords generalizability beyond the fixed stimulus set, and allows one to test stimulus- or trial-

level modulations of neural representations in a straightforward way. In this paper, we assessed 

the efficacy of tRSA in comparison with cRSA using data from simulations representing a wide 

range of possible experimental scenarios (Experiment 1) and data from an extant real fMRI 

study (Experiment 2). In both experiments, our results demonstrated enhanced sensitivity, 

robustness, and flexibility with analyzing neural representations using the tRSA approach.  

 

Methods 

Experiment 1: cRSA and tRSA comparisons in simulated data 

Experiment 1 consisted of three main parts. First, we validated the similarity between tRSA and 

cRSA results in assessing the general representational strength across all trials. In other words, 

we established that tRSA can carry out the main purpose of cRSA. Second, we compared the 

statistical inferences generated by each approach in a set of synthetic within-subject studies 

with two conditions. Third, we demonstrated tRSA’s unique capability of assessing continuous 

modulators of representational strength in a set of synthetic scenarios. A host of parameters 

were varied to ensure the robustness of the comparisons in all three parts, such as the trial 

count, subject sample size, and effect size. 

Estimating overall representational strength 

We first set out to validate that tRSA indeed measures representation similarly to cRSA, and we 

conducted a series of simulations to compare the estimates of RSMmodel-RSMbrain similarity 

obtained from both methods. Assuming an experimental design with 𝑛 = 200 trials, we sampled 

𝑛(𝑛 − 1)/2 = 19900 pairs of values from a bivariate normal distribution, with their Pearson 

correlation fixed at some given value via the `MASS 7.3-60.2` package (Venables et al., 2002) 

in R 4.4.1 (R Core Team, 2024). The two vectors were rearranged as the lower triangular part of 
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two 𝑛 × 𝑛 matrices, and the upper triangular parts were filled out accordingly to yield two 

symmetric matrices 𝑀 and 𝑆, with which we conducted both cRSA and tRSA. With cRSA, 

overall representational strength was estimated as the Fisher-transformed Pearson correlation 

coefficient of the lower triangular parts of the two matrices, which was always equal to the 

ground truth parameter 𝑧. With tRSA, the representational strength for a given trial 𝑖 was 

computed as the Fisher-transformed Pearson correlation coefficient between two row vectors, 

𝑀𝑖· and 𝑆𝑖·, barring entries on the diagonal (see Figure 1C, Bottom). The tRSA values for all 

trials were then averaged to yield an estimate of overall representational strength comparable to 

that from cRSA. Note that Fisher transformation of correlation coefficients was always applied 

such that the distribution of values is more approximately normal (Silver & Dunlap, 1987). This 

set of procedures was repeated for 10,000 iterations, for each ground truth parameter 𝑧 ranging 

from −0.2 to 0.6 with increments of 0.1.  

To adhere to the mathematical constraints of correlation-based RSMs (i.e., positive 

semidefinite), we next simulated activity patterns, from which RSMs were derived. Specifically, 

assuming an experiment with 𝑛 trials and 𝑞 measurement channels (e.g., voxels), we sampled a 

set of 𝑛 ⋅ 𝑞 values from a univariate standard normal distribution 𝙽(0,1), and another set of 𝑛 ⋅ 𝑞 

values from a univariate normal distribution 𝙽(0, 𝜎2). Both vectors were rearranged into matrices 

of 𝑛 rows and 𝑞 columns, yielding a ground truth activity pattern and a noise pattern. The 

summation of these two patterns yielded a measured pattern. Two RSMs were then generated 

from the ground truth pattern (RSMmodel) and the measured pattern (RSMbrain) using Pearson’s 

correlation, with which cRSA and tRSA were conducted separately. This set of procedures was 

repeated for 10,000 iterations with different random samples. The following parameter values 

were used for reported results: 𝑞 = 500, 𝑛 ∈  {10, 15, 20, 25, 30, 40, 50, 100}, 𝜎2 ranging from 0.8 

to 2.0 with increments of 0.2.  

We next assessed the correspondence between tRSA and cRSA in the presence of 

discrete conditions, which is often seen in real studies. Assuming a simple experimental design 

with two conditions, A and B, consisting of 𝑛𝐴 and 𝑛𝐵 trials, respectively, we generated a ground 

truth activity pattern with 𝑛𝐴 + 𝑛𝐵 rows and 𝑚 columns in the same way as before. Then, we 

generated two noise patterns, which were controlled by parameters 𝜎𝐴 and 𝜎𝐵, respectively, one 

for each condition. The measured pattern was again computed as the summation of ground 

truth and noise. cRSA was conducted separately for trials in each condition. Critically, tRSA was 

conducted in an across-condition fashion: we generated RSMs with all 𝑛𝐴 + 𝑛𝐵 trials, obtained 

𝑛𝐴 + 𝑛𝐵 tRSA values as previously described, and then split the values into two sets based on 

the condition each trial belonged to. Finally, as before, we computed the average of tRSA 
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values separately for Conditions A and B to allow comparisons with cRSA values. This set of 

procedures was repeated for 10,000 iterations with different random samples. We assessed the 

influence of three factors: sample size, balance, and noise level, with the following parameter 

values: 𝑞 = 500, 𝑛𝐴, 𝑛𝐵  ∈  {20,80,320}, 𝜎𝐴, 𝜎𝐵  ∈  {1,2}.  

Of note, tRSA could conceivably also be conducted in a within-condition fashion, 

whereby one would generate two separate sets of RSMs according to condition, i.e., one set of 

𝑛𝐴 × 𝑛𝐴 RSMs for Condition A and another set of 𝑛𝐵 × 𝑛𝐵 RSMs for Condition B, and then 

compute the two sets of within-condition tRSA values separately. We hereby advocate for the 

use of across-condition tRSA — which we have used in previous studies (Davis et al., 2021; 

Howard et al., 2024; S. Huang, Howard, et al., 2024; Naspi et al., 2023) — over within-condition 

tRSA. Comparisons of the statistical properties of within-condition and across-condition tRSA 

approaches are discussed in Appendix 1.  

Statistical inferences from tRSA and cRSA 

Modeling discrete conditions 

The essential theoretical advantage of tRSA over cRSA is that representational strength can be 

estimated at the level of experimental trials, which would allow us to properly capture the multi-

level variance structure in the data. To demonstrate this benefit, four sources of variances were 

hypothesized: condition, subject, stimulus, and trial. Condition-level variance denotes the effect 

of experimental conditions or manipulations on representation, with each condition receiving its 

own noise-level parameter 𝜎𝑐𝑜𝑛𝑑,𝑘. This is the focal effect of interest for this simulation. 

Additionally, subject-level variance denotes individual differences in the quality of representation 

across 𝑚 subjects, with each subject receiving one’s own noise-level parameter 𝜎𝑠𝑢𝑏𝑗,𝑖. A within-

subject design is common in real experiments and is thus assumed here, where each subject 

received all experimental conditions. Stimulus-level variance denotes the diversity of stimuli that 

may result in some being represented more strongly than others, with each stimulus receiving 

its own noise level parameter 𝜎𝑠𝑡𝑖𝑚,𝑗. The subject-level and stimulus-level variances were fully 

crossed, i.e., all subjects were assumed to view all stimuli exactly once (condition 

counterbalanced) during the experiment. Finally, trial-level variance denotes random 

fluctuations in the signal across the experiment and is controlled by a single noise-level 

parameter 𝜎𝑡𝑟𝑖𝑎𝑙. Therefore, for a given event of subject 𝑖 responding to stimulus 𝑗 in condition 𝑘, 

we computed its noise level as: 

𝜎𝑖𝑗𝑘 = 𝜎𝑠𝑢𝑏𝑗,𝑖 + 𝜎𝑠𝑡𝑖𝑚,𝑗 + 𝜎𝑐𝑜𝑛𝑑,𝑘 + 𝜎𝑡𝑟𝑖𝑎𝑙.  
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Notably, this multi-level variance structure replaced the fixed noise parameters 𝜎𝐴, 𝜎𝐵, 

while all other procedures remained the same as the previous simulation. The entire set of 

procedures was repeated for 10,000 iterations. The base simulation parameters were as 

follows: 

● Experimental design: 𝑞 = 500, 𝑚 = 40, 𝑛𝐴 = 𝑛𝐵 = 100, and 

● Multi-level variance: 𝜎𝑐𝑜𝑛𝑑  ∈  {1,1.2}, 𝜎𝑠𝑢𝑏𝑗~ 𝙽(0, 0.52), 𝜎𝑠𝑡𝑖𝑚 ~ 𝙽(0, 0.22), 𝜎𝑡𝑟𝑖𝑎𝑙 = 2.  

To assess the robustness of RSA methods in different situations that could occur in real 

data, we introduced a number of variations to the base design:  

● Number of subjects: 𝑚 ∈  {10, 20, 40, 80, 160, 320}.  

● Trial count per subject: 𝑛𝑡𝑟𝑖𝑎𝑙  ∈  {20, 30, 46, 70, 100, 250, 220, 330, 500}.  

● Trial count ratio: 𝑛𝐴  ∈  {20, 40, 60, . . . , 180}, 𝑛𝐵 = 200 − 𝑛𝐴.  

● Variance in trial count ratio across subjects: 𝜎𝑛  ∈  {0, 1, 2, 4, 8, 16, 32, 64, 128}. Actual trial 

counts were drawn from a truncated normal distribution, 

𝑛𝐴 ~ 𝑡𝑟𝑢𝑛𝑐𝑁(100, 𝜎𝑛, 10, 190), 𝑛𝐵 = 200 − 𝑛𝐴.  

● Effect size: condition-level noise 𝜎𝑐𝑜𝑛𝑑,𝐴/𝐵  ∈  {1.00, 1.05, 1.10, . . . , 1.30}. Greater 

differences in the condition-level noise correspond to larger condition effects.  

Following data generation, condition-level representational strength was estimated using 

cRSA and trial-level representational strength was estimated using tRSA. We focused on the 

statistical inferences of the effect of conditions, namely 𝑏𝐵−𝐴. To this end, cRSA estimates were 

submitted to a paired-sample t-test. Critically, tRSA estimates were submitted to a mixed-effects 

model that is theoretically appropriate for the multi-level variance structure in the data (Baayen 

et al., 2008; Chen et al., 2021). Specifically, a linear mixed-effects model with a fixed effect of 

condition and random effects of both subjects and stimuli were fitted to tRSA estimates via the 

`lme4 1.1-35.3` package in R (Bates et al., 2015), and p-values were estimated using 

Satterthwaites’s method via the `lmerTest 3.1-3` package (Kuznetsova et al., 2017).  

Given data generated with 𝜎𝑐𝑜𝑛𝑑,𝐴 = 𝜎𝑐𝑜𝑛𝑑,𝐵, the correct inference should be a failure to 

reject the null hypothesis of 𝑏𝐵−𝐴 = 0; any significant (𝑝 < 0.05) result in either direction was 

considered a false positive or Type I error. Given data generated with 𝜎𝑐𝑜𝑛𝑑,𝐴 > 𝜎𝑐𝑜𝑛𝑑,𝐵, the 

inference was considered correct if it rejected the null hypothesis of 𝑏𝐵−𝐴 = 0 and yielded the 

expected sign of the estimated contrast (𝑏𝐵−𝐴 > 0). A significant result with the reverse sign of 

the estimated contrast (𝑏𝐵−𝐴 < 0) was considered a Type I error, and a nonsignificant (𝑝 ≥

 0.05) result was considered a false negative or Type II error. Error rates were computed for 
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each RSA method and were compared against the null hypothesis of equal proportions between 

methods.  

Modeling continuous modulators  

In addition to discrete experimental conditions, we also simulated data reflecting scenarios in 

which representational strength varies continuously with some modulator. For example, one 

may be interested in the effects of continuous variables such as image complexity and 

memorability (stimulus-level) or reaction time (trial-level). In this case, 𝜎𝑡𝑟𝑖𝑎𝑙 was no longer a 

constant throughout the experiment but a trial-level variable. For a given event of subject 𝑖 

responding to stimulus 𝑗 in trial 𝑘, we computed its noise level as: 

𝜎𝑖𝑗𝑘 = 𝜎𝑠𝑢𝑏𝑗,𝑖 + 𝜎𝑠𝑡𝑖𝑚,𝑗 + 𝜎𝑡𝑟𝑖𝑎𝑙,𝑘.  

To capture the effect of this trial-level variable, we generated a random variable 

𝑣𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 that reflects a trial-level measurement with construct validity 𝑟𝑣𝑎𝑙 =

𝐶𝑜𝑟(𝑣𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 , 𝜎𝑡𝑟𝑖𝑎𝑙), which was restricted to be a nonpositive value. When 𝑟𝑣𝑎𝑙 = 0, 𝑣𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 

carries no information of the underlying 𝜎𝑡𝑟𝑖𝑎𝑙 and should not predict trial-level representational 

strength. When 𝑟𝑣𝑎𝑙 < 0, 𝑣𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 is inversely related to trial-level noise and should positively 

predict trial-level representational strength. The entire set of procedures was repeated for 

10,000 iterations. The base simulation parameters were as follows: 

● Experimental design: 𝑞 = 500, 𝑚 = 40, 𝑛 = 200, and 

● Variance structure: 𝑟𝑣𝑎𝑙  ∈  {0, −0.1}, 𝜎𝑠𝑢𝑏𝑗~ 𝙽(0, 0.52), 𝜎𝑠𝑡𝑖𝑚 ~ 𝙽(0, 0.22), 𝜎𝑡𝑟𝑖𝑎𝑙 = 2.  

As before, we introduced a number of variations, as follows: 

● Number of subjects: 𝑚 ∈  {10, 20, 40, 80, 160, 320}.  

● Number of trials per subject: 𝑛𝑡𝑟𝑖𝑎𝑙  ∈  {20, 30, 46, 70, 100, 250, 220, 330, 500}.  

● Variance in the number of trials per subject: 𝜎𝑛  ∈  {0, 20, 40, . . . , 160}. Actual trial counts 

were drawn from a truncated normal distribution, 𝑛 ~ 𝑡𝑟𝑢𝑛𝑐𝑁(𝑛, 𝜎𝑛, 20, 𝑛).  

● Effect size: 𝑟𝑣𝑎𝑙  ∈  {−0.10, −0.09, . . . , 0.00}. More negative values of 𝑟𝑣𝑎𝑙 should result in 

greater representational strength.  

Following data generation, two conditions were created for each subject based on a 

median split (A=low 𝑣𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑, B=high 𝑣𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑), and we tested cRSA and tRSA models as 

described in the previous simulation, focusing on 𝑏𝐵−𝐴. Furthermore, we additionally modeled 

trial-level representational strength as a function of 𝑣𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 directly, using a linear mixed-

effects model of tRSA estimates with a fixed effect of 𝑣𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 and random effects of both 

subjects and stimuli. Given data generated with 𝑟𝑣𝑎𝑙 = 0, the correct inference should be a 

failure to reject the null hypothesis of 𝑏 = 0 in both discrete and continuous models; any 
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significant (𝑝 < 0.05) result in either direction was considered a false positive or Type I error. 

Given data generated with 𝑟𝑣𝑎𝑙 < 0, the inference was considered correct if it rejected the null 

hypothesis of 𝑏 = 0 and yielded the expected sign of the estimated contrast or slope 𝑏 > 0. A 

significant result with the reverse sign of the estimated contrast or slope (𝑏 < 0) was considered 

a Type I error, and a nonsignificant (𝑝 ≥ 0.05) result was considered a false negative or Type II 

error. Error rates were computed for each RSA method and were compared against the null 

hypothesis of equal proportions between methods.  

 

Experiment 2: cRSA and tRSA comparisons in fMRI data 

Experiment 2 proceeded in 3 steps. First, we assessed how the impact of subject-level variance 

in heterogeneity of trial ratios amongst two critical conditions (“Hits” and “Misses”) can lead to 

biased estimates of representational strength. Second, we examined the impact of modeling 

trial-level variance on both representational strength during Object Naming, as well as 

Mnemonic Strength during a memory retrieval task. Lastly, stimulus-level estimates of 

representational strength were related to object memorability — an analysis that is not directly 

accessible to cRSA.  

Data acquisition 

Participants 

A total of 38 adults, aged 18 to 30, participated in this study on a voluntary basis and received 

monetary compensation for their time. Eligibility criteria required participants to be native or 

fluent English speakers, with no history of significant neurological or psychiatric conditions, and 

not taking medications that could affect cognitive function or cerebral blood flow (except for 

antihypertensive agents). All participants provided written informed consent before the start of 

the study. Six participants did not complete the study and were excluded from the analysis. 

Additionally, two participants were excluded from the Memory Retrieval analyses due to poor 

memory performance. The final sample included 32 participants (21 women and 11 men) for the 

Object Perception task and 30 participants (19 women and 11 men) for the Memory Retrieval 

task. 

Experimental design 

An expansive outline of the study design for the tasks described below can be found in (S. 

Huang, Bogdan, et al., 2024); here we briefly review relevant details pertinent to our application 

of trial-level RSA for a subset of that data. Data from two experimental datasets were used, 
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including an Object Perception dataset and a Memory dataset (Figures 7A and 8A). In the 

Object Perception task, participants were shown images of 114 unique everyday objects on a 

white background. The corresponding label presented underneath each object and participants 

were asked to rate how well the label described the object on a four-point scale. The main 

purposes of this rating task was to make sure that participants assess the meaning of the 

objects and to verify that these objects are indeed familiar to them (mean rating = 3.59). The 

objects were presented for 4 seconds, followed by a jittered fixation cross with an average 

duration of 4 seconds. In the memory task, a Memory Encoding session took place at least 7 

days after Object Perception. During Encoding, participants viewed images of 114 unique real-

world scenes along with the 114 objects they had seen in session 1. In each trial, participants 

were shown a scene image for 3 seconds, followed by a jittered empty box indicating the 

continuation of the trial, which lasted for an average of 3 seconds, and finally an object image 

for 4 seconds. During the object presentation, participants rated “how likely it is to find the object 

in the scene” on a 4-point scale (1 = “very unlikely,” 2 = “somewhat unlikely,” 3 = “somewhat 

likely,” 4 = “very likely”). Each trial was separated by a jittered fixation cross with an average 

duration of 4 seconds. Memory Retrieval consisted of three scanning runs, each with 38 trials, 

lasting approximately 9 minutes and 12 seconds. Memory Retrieval took place one day after 

Memory Encoding and involved testing participants’ memory of the objects. In the main Memory 

Retrieval task, participants were presented with 144 labels of real-world objects, of which 114 

were labels for previously seen objects and 30 were unrelated novel distractors. In a 

subsequent Perceptual Memory Retrieval task participants were shown 126 images of real-

world objects (96 old images, 18 were different exemplar images of old objects, and 12 images 

of unrelated novel objects). Participants were asked to determine whether the image was old, 

similar, or new. All analyses in the current study pertained to fMRI data from Object Perception 

and the main Memory Retrieval tasks, as well as behavioral data from the Perceptual Memory 

Retrieval task.  

MRI data acquisition 

MRI data were collected using a 3T GE MR750 Scanner equipped with an 8-channel head coil 

at the Brain Imaging and Analysis Center (BIAC) at Duke University. Each MRI session began 

with a localizer scan, during which 3-plane (straight axial/coronal/sagittal) faster spin echo 

images were obtained. A high-resolution T1-weighted (T1w) structural scan was then acquired, 

consisting of 96 axial slices parallel to the AC-PC plane, with voxel dimensions of 0.9 × 0.9 × 

1.9 mm³. This was followed by blood-oxygenation-level-dependent (BOLD) functional scans 
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using a whole-brain gradient-echo echo planar imaging sequence (repetition time = 2000 ms, 

echo time = 30 ms, field of view = 192 mm, 36 oblique slices with voxel dimensions of 3 x 3 x 3 

mm³). Task instructions and stimuli were delivered using the PsychToolbox program (Kleiner et 

al., 2007) and projected onto a mirror at the back of the scanner bore. Participants responded 

using a four-button fiber-optic response box. To reduce scanner noise, participants wore 

earplugs, and MRI-compatible lenses were provided when necessary to correct vision. Foam 

padding was placed inside the head coil to minimize head movement.  

Data analysis 

MRI data preprocessing 

fMRIPrep 23.0.1 (Esteban et al., 2019, 2023) was used to preprocess structural and functional 

MRI data, as well as generating text descriptions of preprocessing details, which were 

condensed below. T1w structural images collected across all MRI sessions for the same 

participant were corrected for intensity non-uniformity with `N4BiasFieldCorrection` (Tustison et 

al., 2010) from ANTs 2.3.3 (Avants et al., 2011). The T1w-reference was skull-stripped with a 

Nipype implementation of the `antsBrainExtraction.sh` workflow from ANTs, using 

OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid (CSF), 

white-matter (WM), and gray-matter (GM) was performed on the brain-extracted T1w using 

`fast` from FSL (Zhang et al., 2001). An anatomical T1w-reference map was computed after 

registration of T1w images using `mri_robust_template` from FreeSurfer 7.3.2 (Reuter et al., 

2010). Brain surfaces were reconstructed using `recon-all` from FreeSurfer 7.3.2 (Dale et al., 

1999), and the brain mask estimated previously was refined with a custom variation of the 

method to reconcile ANTs-derived and FreeSurfer-derived segmentations of the cortical gray-

matter of Mindboggle (Klein et al., 2017). Volume-based spatial normalization to the ICBM 152 

Nonlinear Asymmetrical template version 2009c standard space was performed through 

nonlinear registration with `antsRegistration` from ANTs 2.3.3, using brain-extracted versions of 

both T1w reference and the T1w template.  

BOLD functional data across all sessions and runs were preprocessed collectively. A 

reference volume and its skull-stripped version were generated using a custom methodology of 

fMRIPrep. Head-motion parameters with respect to the BOLD reference were estimated, 

followed by spatiotemporal filtering using `mcflirt` from FSL (Jenkinson et al., 2002). BOLD runs 

were slice-time corrected to 0.972s (0.5 of slice acquisition range 0s-1.94s) using `3dTshift` 

from AFNI (Cox & Hyde, 1997). The BOLD time-series were resampled onto their original, 

native space by applying the transforms to correct for head-motion. The BOLD reference was 
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then co-registered to the T1w reference using boundary-based registration via `bbregister` from 

FreeSurfer (Greve & Fischl, 2009). Co-registration was configured with six degrees of freedom. 

Confounding time-series calculated based on the preprocessed BOLD included: root mean 

square displacement (RMSD) between frames (Jenkinson et al., 2002), absolute sum of relative 

framewise displacement (FD) (Power et al., 2014), and the derivative of root mean square 

variance over voxels (DVARS) (Power et al., 2014), as well as global signals extracted within 

CSF, WM, and the whole-brain mask. Additionally, a set of physiological regressors were 

extracted to allow for component-based noise correction (CompCor) (Behzadi et al., 2007). 

Principal components were estimated after high-pass filtering the preprocessed BOLD time-

series (using a discrete cosine filter with 128s cut-off) for the two CompCor variants: temporal 

(tCompCor) and anatomical (aCompCor). tCompCor components were calculated from the top 

2% variable voxels within the brain mask. For aCompCor, three probabilistic masks (CSF, WM 

and combined CSF+WM) were generated in anatomical space. For each CompCor 

decomposition, the k components with the largest singular values that cumulatively explained at 

least 50% of variance across the nuisance mask (CSF, WM, combined, or temporal) were 

retained. The BOLD time-series were resampled into standard space with a spatial resolution of 

2 × 2 × 2 mm3 or 97 × 115 × 97 voxels. First, a reference volume and its skull-stripped version 

were generated using a custom methodology of fMRIPrep. All resamplings can be performed 

with a single interpolation step by composing all the pertinent transformations (i.e., head-motion 

transform matrices, susceptibility distortion correction when available, and co-registrations to 

anatomical and output spaces). Gridded (volumetric) resamplings were performed using 

`antsApplyTransforms` (ANTs), configured with Lanczos interpolation to minimize the smoothing 

effects of other kernels (Lanczos, 1964). Non-gridded (surface) resamplings were performed 

using `mri_vol2surf` (FreeSurfer). 

Single-trial modeling 

Neural activity in gray matter (GM) voxels for each object presentation event was estimated 

using first-level least squares separate general linear models (Mumford et al., 2012) constructed 

with SPM12 (Friston et al., 2006) and custom MATLAB scripts. Subject-specific GM masks were 

generated by binarizing the fMRIPrep-derived probabilistic masks with a threshold set to 

exclude voxels with 80% probability of CSF or WM. Each model included a regressor for the 

event of interest along with a regressor for all other objects. Both regressors were convolved 

with the canonical double-Gamma hemodynamic response function, including their temporal 

and dispersion derivatives to account for variations in the timing of the peak response. 
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Covariates of no interest included global signal, WM signal, CSF signal, FD, DVARS, RMSD, 

and six motion parameters related to translation and rotation. A high-pass temporal filter with a 

cutoff of 128 seconds was applied, and the AR(1) model was used to correct for autocorrelation. 

These first-level models yielded regression coefficients (betas) that estimated voxel-level neural 

activity corresponding to a single trial. Trials with FD greater than 1mm either before or during 

the trial were excluded (range: 0-28). Additionally, runs with more than 25% motion trials were 

excluded. In total, 1 Object Perception run, and 3 Memory Retrieval runs were excluded.  

Behavioral Analyses 

Trials for which participants gave no response in the Object Perception (mean 5) or the main 

Memory Retrieval (mean 4) were excluded from all analyses involving fMRI data at Perception 

and Memory Retrieval tasks respectively. As our primary behavioral measure, we assessed the 

memory performance for the object labels. Participants demonstrated variability in their ability to 

distinguish between old and new objects, as well as in their decision criteria, making direct 

comparisons of raw responses challenging. To address these biases, we performed a receiver-

operating characteristics (ROC) analysis using `yardstick 1.3.1` (Kuhn et al., 2024) in R. This 

analysis allowed us to categorize Hit and Miss trials by determining whether counting only “4” 

responses or both “3” and “4” responses as “old” yielded the best decision outcome (i.e., closest 

to 100% true positive and 0% false positive). The outcome of this analysis was then used to 

compute the sensitivity index (d’) of recognition. Adjusted hit rates were used to determine 

adherence to the task and sufficient fMRI data during Memory Retrieval.  

Behavioral analyses categorized each trial during Memory Retrieval as either a “Hit” or 

“Miss” for the purpose of categorizing the conditions in the fMRI data. This analysis determined 

whether counting only “4” responses or both “3” and “4” responses as “old” produced the most 

accurate decision outcome (i.e., closest to 100% true positive and 0% false positive). In total, 

data from 8 participants were adjusted to consider only “4” responses as “hit” trials. The results 

were then used to calculate the sensitivity index (d’) of recognition within each subjective 

congruency condition and the corrected hit rate. Participants with post-adjustment hit rates 

below 40% were considered to have low adherence to the task and were excluded from all 

subsequent analyses. The number of included trials per participant for perception (mean = 110), 

ROC values (mean = 0.78), the count of hit trials (mean =76) as well as the corrected hit rate 

(mean = 0.70), are detailed in Appendix 2 Table 4. 
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Neural Representational Similarity Matrices 

Models for neural pattern similarity (RSMbrain) were constructed using both the Object Perception 

study and the main Memory Retrieval task. Twenty six regions from the Human Brainnetome 

Atlas (Fan et al., 2016), focusing on eight areas within the lateral occipital cortex (LOC), 14 

areas within the inferior temporal cortex (ITC), and four areas in the inferior parietal cortex (IPL, 

combining IPL sub regions into lateral posterior and anterior regions), as these regions are 

critically involved in visual representations during object perception and memory retrieval (Davis 

et al., 2021; Favila et al., 2020; Howard et al., 2024; Long & Kuhl, 2021). For each of these 26 

regions, we constructed similarity matrices of voxel activation patterns across stimuli with 

custom scripts in MATLAB and SPM12 (Friston et al., 2006). This was done by vectorizing the 

voxel-level activation values within each region and calculating their correlations using 

Pearson’s r, excluding all within-run comparisons. While each cell in a RSMmodel reflects the 

similarity in stimulus properties, each cell in the 114×114 RSMbrain represents the similarity in 

activation patterns across different stimuli (Figure 1A). 

Model Representational Similarity Matrix 

The C2 layer of the Hierarchical Model of object recognition (HMAX) was used to capture visual 

similarity between the 114 objects. The PsyTorch implementation of the HMAX model was used 

and contains four sequential stages, each with their own output: S1, C1, S2, and C2. The S1 

layer applies Gabor filters to the input image across multiple scales and orientations. The Gabor 

filters capture edge-like features such as bars and gratings. The output consists of feature maps 

that highlight these basic visual components. Following the S1 layer, the C1 layer performs local 

max pooling over the S1 feature maps. This operation introduces some degree of invariance to 

position and scale. By selecting the maximum response within localized regions, the C1 layer 

reduces the spatial resolution while retaining the most salient features. The stages S2 and C2 

build upon this foundation using similar pooling mechanisms. Specifically, S2 units pool 

information from the C1 stage using linear filters and function as radial basis functions, 

responding most strongly to specific prototype input patterns. These prototypes are derived from 

random fragments extracted from a set of natural images, independent of the stimuli used in this 

study. The C2 layer then pools outputs from S2 units using a MAX operation, which provides a 

degree of position and scale tolerance, allowing for robust representation of visual objects. This 

global pooling results in a feature vector that is highly invariant to position and scale, capturing 

the presence of complex features regardless of their location in the input image. The C2 layer’s 
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output serves as a compact representation of the visual input (Kriegeskorte et al., 2008; 

Riesenhuber & Poggio, 1999, 2002; Serre et al., 2005, 2007; Sufikarimi & Mohammadi, 2020).  

Features from the C2 layer of the HMAX model were used to create the model RSM. 

Pairwise similarity between images was computed using Pearson’s correlation coefficient (r), 

measuring the relationship between their C2 feature vectors. These values were organized into 

a 114×114 RSM, where each cell represented the similarity between two images. The resulting 

RSMmodel provided a structured representation of visual similarity, with higher correlations 

indicating shared complex features (Figure 1B). 

Classic Representational Similarity Analysis (cRSA) 

We conducted cRSA using data from both the Object Perception dataset and the Memory 

Retrieval dataset. For Object Perception, we estimated participants’ classic representational 

strength in each of the 26 regions of interest by calculating Spearman’s rho between the 

RSMbrain and the RSMmodel, while excluding within-run comparisons and the diagonal cells of the 

matrices (see Figure 1C, Top). We then assessed the strength and reliability of visual 

representations across participants using one-sample t-tests (testing Fisher-transformed rho > 

0) for each of the 26 regions, applying a false discovery rate (FDR) correction with a threshold 

of q = 0.05. 

To evaluate cRSA’s performance in detecting differences in representational strength 

between conditions, we analyzed data from the main Memory Retrieval task, focusing on old 

items. An RSMbrain for each of the 26 regions of interest was parsed into two separate RSMs: 

one containing data from “Hit” trials and the other from “Miss” trials. Similarly, the model RSMs 

were split based on participant responses. We then calculated Spearman’s rhos for the Hit and 

Miss conditions by correlating RSMbrain and RSMmodel, again excluding within-run comparisons 

and the diagonal cells of the matrices. These subject-specific representational strength 

measures were subsequently Fisher-transformed and analyzed using paired-sample t-tests. 

Regions showing significantly higher representational strength for Hit trials compared to Miss 

trials, after FDR correction with q < 0.05, were identified as mnemonic representation regions. 

To assess the impact of unbalanced trial counts on mnemonic representational strength, 

we calculated a Contrast Variance Factor (CVF) for each participant in regions showing 

evidence of mnemonic representation (p < 0.05, uncorrected). The participant contrast score 

was determined by subtracting the Miss representational strength (𝑅𝑖,𝑀) from the Hit 

representational strength (𝑅𝑖,𝐻). 

𝐷𝑖 =  𝑅𝑖,𝐻 −  𝑅𝑖,𝑀 
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Next, we computed the mean difference �̅� across all participants: 

�̅� =
1

𝑁
∑ 𝐷𝑖

𝑁

𝑖

 

To quantify how much each participant’s mnemonic representational strength in each 

ROI deviated from the mean (thus inflating the contrast variance), we calculated the normalized 

absolute difference between the participant contrast score (𝐷𝑖) and the average contrast score 

(�̅�): 

𝐶𝑉𝐹𝑖 =
|𝐷𝑖 − �̅�|

�̅�
 

Finally, to evaluate the influence of unbalanced trial counts on the variance factor, we 

correlated the participant CVF averaged across regions with the ratio of Hit trial count (𝑁𝑖,𝐻) to 

Miss trial count (𝑁𝑖,𝑀). 

𝑅𝑎𝑡𝑖𝑜𝑖 =
𝑁𝑖,𝐻

𝑁𝑖,𝑀
 

Trial-Level Representational Similarity Analysis (tRSA) 

The tRSA approach used the same model and neural RSMs from the Object Perception dataset 

and the main Memory Retrieval dataset as described above. However, instead of correlating the 

two matrices in their entirety, correlations were computed on a row-by-row basis, excluding 

within-run similarities and the diagonal cells of the matrices (see Figure 1C, Bottom). The trial-

level estimates from both phases were then fitted to a series of mixed-effects models using the 

`lme4` package in R (R Core Team, 2024) with restricted maximum likelihood methods. These 

fitted models were then evaluated using the Akaike Information Criterion (AIC) to determine the 

optimal random effect structure (Meteyard & Davies, 2020; Park et al., 2020). To further validate 

model selection (Matuschek et al., 2017), models were refit using maximum likelihood 

estimation and subjected to model selection via log-likelihood ratio tests (LRTs). The average 

AICs and the results of the LRTs are reported in Appendix 2 Table 5. Restricted maximum 

likelihood models with the selected random effects structure were further analyzed using the 

`lmerTest` package. Denominator degrees of freedom were estimated using Satterthwaite’s 

method (Satterthwaite, 1946), and fixed effects were tested using t-tests with an alpha level of 

0.05, corrected for false discovery rate (FDR) to account for multiple comparisons. 

To estimate tRSA representational strength, trial-level estimates from the Object 

Perception dataset were fit to a mixed-effects model with random intercepts for Participant and 

Stimulus. Estimated intercepts (b > 0) were used to identify representational regions. For 
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detecting tRSA mnemonic representations in the main Memory Retrieval task, instead of 

constructing separate Hit and Miss RSMs, row-wise correlations were performed across all trials 

in the matrices (i.e., across-condition tRSA). This approach allows for trial-level estimates of 

representational strength that can be subsequently categorized as “Hit” or “Miss” and analyzed 

using a series of mixed-effects models. The model for mnemonic representation data included 

the fixed effect of Memory Success (Hit vs. Miss trials) and random intercepts for Participant 

and Stimulus. 

Examining continuous modulators of representation 

The capacity of tRSA in examining stimulus-level variance modulating representation was 

assessed. For each item, a memorability score was calculated as the average response across 

participants (on a scale of 1-4 for the main Memory Retrieval and 1-3 for Perceptual Retrieval), 

normalized by the maximum possible value (4 for main retrieval and 3 for perceptual retrieval). 

This approach produced two stimulus-specific continuous variables indicating the overall 

confidence with which each item would be recalled. We refer to these measures as Conceptual 

Memorability and Item Memorability (perceptual). The Item Memorability measure was used as 

an of-interest fixed effect for trial-level representational strength estimates from the Object 

Perception dataset. Additional fixed nuisance variables included Conceptual Memorability, fMRI 

run, and trial-level reaction time. Random intercepts for Participant and Stimulus were also 

included.  

 

Results 

Experiment 1: cRSA and tRSA comparisons in simulated data 

Basic statistical properties of tRSA estimates 

To understand the statistical properties of representational strength estimates obtained via 

cRSA and tRSA, we first simulated datasets with a wide range of ground truth representational 

strengths. With fixed ground truth correlation between two symmetric matrices (i.e., fixed cRSA 

value), our simulations indicated that tRSA could produce reliable estimates of overall 

representational strength comparable to cRSA. Specifically, the average of trial-level estimates 

from tRSA centered around cRSA when the ground truth is zero correlation; as the magnitude of 

the ground truth increased, there appeared to be a bias toward slightly larger magnitudes. 
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Despite this, the spread of tRSA estimates remained small, with a tight range of [0.599, 0.604] 

around the ground truth of 0.600 (see Figure 3A).  

A limitation of this simulation is that the symmetric matrices were randomly generated 

without being guaranteed to be mathematically valid similarity matrices (i.e., positive 

semidefinite). For example, [[1, 1, 1], [1, 1, −1], [1, −1, 1]] is symmetric but is not a valid 

correlation RSM, since it is impossible to satisfy 𝑎 = 𝑏 = 𝑐 (row 1) and 𝑎 = 𝑏 = −𝑐 (row 2) 

unless 𝑎 = 𝑏 = 𝑐 = 0, in which case the Pearson correlation is undefined. Similarly, RSMs using 

distance metrics such as Euclidean distance must satisfy the triangle inequality, i.e., 𝑑𝑥𝑦 +

𝑑𝑥𝑧  ≥  𝑑𝑦𝑧. Moreover, it is difficult to implement the multi-level variance structure directly on 

RSMs; rather, those variances are theorized to operate directly on the underlying activity 

patterns. To adhere to the mathematical constraints on similarity matrices and for better 

correspondence to real implementations, we simulated activity patterns from which RSMs were 

then derived and used to estimate representational strength. Notably, while it is difficult to fix the 

ground truth representational strength, we manipulated the statistical dependence between the 

activity patterns — and by extension, between RSMbrain and RSMmodel — by injecting varying 

levels of measurement noise (𝜎2). Simulations indicated that increasing measurement noise 

indeed reduced estimates of representational strength by both cRSA and tRSA (see Figure 

3B). Also as expected, greater trial counts led to more stable estimates for both methods. Most 

importantly, a strong positive correlation between cRSA and tRSA estimates can be observed 

even in the “noisiest” simulation (i.e., 𝑛 = 10, 𝜎2 = 2; Intercept b0 = 0.00, SE = 0.01, t = 0.33, p = 

0.74; Slope bcRSA = 1.00, SE = 0.02, t = 64.95, p < 0.001). These results demonstrated the close 

numerical correspondence between tRSA and cRSA in estimating the overall representational 

strength of a given system across all trials.  

Discrete conditions 

Oftentimes, researchers are interested in not only representational strength per se, but 

also how representation changes with other factors like experimental manipulations (e.g., “easy” 

vs. “hard”), behavioral performance (e.g., “remembered” vs. “forgotten”), or some combination. 

Analyzing these differences with cRSA entails partitioning the data to generate separate 

condition-specific RSMs. Subsequently, an intuitive version of within-condition tRSA can be 

computed using those RSMs, and its estimates would closely track cRSA estimates, as we have 

demonstrated in the previous section. Instead, we advocate for across-condition tRSA: full 

RSMs are used for computing trial-level representational strength, and the estimates are then 
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split by conditions as necessary. For a direct comparison of within- and across-condition tRSA, 

see Appendix 1. 

A 

 

B 

 

C 

 

D 

 

 

Figure 3. Correspondence between classic and trial-level RSA. A) Histograms of representational strength 
estimates obtained by averaging tRSA values. Each histogram depicted 10,000 iterations. Representational 
similarity matrices (RSMs) were simulated based on known ground truth representational strength values (cRSA). 
Solid vertical lines indicate the mean of the observations, and dashed vertical lines indicate the ground truth 
representational strength. B) Scatter plots of overall representational strength estimates, based on simulated 

activity patterns, produced by cRSA (x-axis) and tRSA (y-axis). Trial count (𝑛) and measurement noise level (𝜎2) 
were both varied. 50 iterations were performed for each parameter combination. Solid slopes indicate where tRSA 
equaled cRSA (𝑦 = 𝑥). C) Histograms of overall representational strength estimates, based on simulated activity 
patterns for two separate conditions, produced by cRSA (gray) and across-condition tRSA (orange). Each 
histogram depicted 10,000 iterations. Trial counts were varied; for example, “20 : 80” means that Condition A 
contained 20 trials and Condition B contained 80 trials, which was an unbalanced scenario. Effect sizes were also 
varied, such that the ground truth representational strength would be equal between conditions (“A = B”) or 
stronger in Condition B (“A < B”). D) Histograms of condition differences in representational strength values in C.  

Here, we examined the correspondence of across-condition tRSA with cRSA in a wide 

range of scenarios where data can be meaningfully split into two subsets. Specifically, we 

assessed the influence of three important factors that may vary widely across studies: raw trial 

counts, balance of trial counts, and effect sizes. Because cRSA was performed separately for 

each condition, changes in the trial count or effect size of Condition B had no influence on cRSA 

estimates for Condition A. However, they indeed affected estimates obtained from across-

condition tRSA, where all experimental trials were used for representational strength estimation. 
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Specifically, all else being equal, increasing the trial count in Condition B from 20 to 80 or from 

80 to 320 improved the reliability of tRSA estimates in Condition A (see Figure 3C, Rows 1 and 

3). Additionally, increasing the noise level for Condition A to be higher than that for Condition B 

led to reduced tRSA estimates in Condition B as well. These effects were also reflected in the 

condition difference in tRSA estimates (see Figure 3D). Moreover, it is critical to note that tRSA 

appeared to be more reliable than cRSA in almost all simulated scenarios, especially in terms of 

the estimated difference between conditions. These findings suggest that tRSA may be more 

sensitive to true effects and at lower risk of false positives, i.e., reduced Type II and Type I error 

rates in formal statistical tests.  

Contrasting conditions 

 

Figure 4. Testing condition differences in representational strength with varying effect sizes. The effect size 
of the condition difference in representation was manipulated by changing the noise level in each condition in small 
increments, with higher noise levels corresponding to lower ground truth representational strengths. When the 
noise level was the same for both conditions, Type I error rates (red) were computed as the proportion of 
significant contrasts across 10,000 iterations, regardless of sign of the estimate. Otherwise, proportions were 
computed separately for effects of the correct sign (+, or B>A; blue) and of the incorrect sign (-, or B<A). Asterisks 
indicate the significance level of the test of equal proportions between simulation results from cRSA (left) and tRSA 
(right). Significance annotation: *** p < 0.001, ** p < 0.01, * p < 0.05. 

The next set of simulations compared across-condition tRSA to cRSA in terms of 

statistical inferences, focusing on the difference in representational strength between two 

conditions as a typical effect of interest in many empirical studies. We implemented the 

condition differences by altering two condition-level noise parameters, where more noise would 

result in lower representational strength. The statistical significance of the condition difference 

𝑏𝐵−𝐴 was estimated by a paired-sample t-test for cRSA and by a linear mixed-effects model for 

tRSA, using a threshold of α = 0.05. Depending on whether the two conditions ought to have the 

same quality of representation, outcomes were classified as true positives, true negatives, false 
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positives (Type I error), or false negatives (Type II error). The performance of cRSA and tRSA 

were quantified with their specificity (1 - Type I error rate) and sensitivity (1 - Type II error rate). 

We first examined how cRSA and tRSA performed with effects of different sizes, under a 

base within-subject experimental design consisting of 40 subjects and 200 unique stimuli 

randomly and evenly split between two conditions. Across 10,000 simulations, cRSA and tRSA 

were comparable in terms of specificity, with both Type I error rates neighboring around the 

nominal 5%. As the true condition difference increased, the sensitivity of both methods also 

increased accordingly. Importantly, tRSA were significantly more sensitive to true effects than 

cRSA in a range of simulated scenarios, consistent with our hypothesis (see Figure 4). 

We further probed the robustness of cRSA and tRSA across datasets that varied in 

several important experimental design factors, namely the number of participants, trial counts 

per participant, and the balance of trial counts. In terms of specificity, our simulations did not 

suggest an effect of those manipulated factors, as the proportions of significant contrasts 

yielded by both cRSA and tRSA did not significantly deviate from the nominal alpha level of 5%. 

Tests of significant contrast proportions reported by cRSA and by tRSA also failed to reject the 

null hypothesis of equal proportions (p > 0.05), suggesting similarly acceptable Type I error 

rates of both approaches (see Figure 5, Left).  

In terms of sensitivity, our simulations revealed large impacts of all manipulated 

parameters. Increasing the number of subjects or the trial count per subject improved the 

sensitivity of true effects, benefiting both cRSA and tRSA substantially. Tests comparing the 

sensitivity of tRSA and cRSA suggested an advantage of tRSA at small-to-medium sample 

sizes of up to at least 40 subjects, and at medium trial counts of between 100 and 220 trials per 

subject (see Figure 5A-B, Right). We additionally tested variabilities in trial counts that may 

occur in real experiments. In one set of simulations, the total trial count was fixed at 200 but the 

ratio of trial counts between conditions varied consistently across subjects (i.e., systematic 

imbalance; Figure 5C). In another set of simulations, while trial counts were kept approximately 

equal between conditions on average, subject-specific ratios varied (Figure 5D). In both 

scenarios, increasing heterogeneity in trial counts resulted in substantially reduced sensitivity for 

cRSA. This result was expected: the reliability of cRSA estimates depends largely on trial 

counts (Figure 2), which violated the homoscedasticity assumption of the subsequent paired-

sample t-test. In the meantime, with trial-level estimates of representational strength from tRSA, 

the subsequent mixed-effects models were able to properly handle this variance in trial count. 

Indeed, our simulations validated that tRSA was more robust to extreme scenarios and always 

significantly outperformed cRSA in sensitivity (see Figure 5C-D, Right).  
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Specificity 

Ground truth: 𝑏𝐵−𝐴 = 0 
Sensitivity 

Ground truth: 𝑏𝐵−𝐴 > 0 
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D 

  

Figure 5. Testing condition differences in representational strength with varying designs. The robustness 
of cRSA and tRSA were assessed in several variations of a base experimental design consisting of 40 subjects 
and 200 unique stimuli (randomly and evenly split into two sets). Simulations varied in A) number of subjects, B) 
trial count per subject, C) the ratio of trial counts between two conditions (with a fixed total), and D) the variance 
of trial count ratios across participants (even split overall). In each simulation, the statistical significance of the 
condition difference in representational strength was determined by a paired-sample t-test for cRSA and a linear 
mixed-effects model for tRSA, with α = 0.05. The proportion of significant contrasts was computed across 10,000 
iterations. Type I error rates were computed regardless of the direction of the contrast. Type II error rates were 
computed only for the correct contrast (i.e., B > A). Error bars indicate standard errors. In the left column, dashed 
horizontal lines mark the nominal α level of 0.05, and dotted horizontal lines mark the critical values beyond which 
the estimated proportion would be significantly different from α. Asterisks indicate the significance of the deviation 
in error rates between cRSA and tRSA results, *** p < 0.001, ** p < 0.01, * p < 0.05. 
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Continuously varying effects  

A crucial advantage of tRSA over cRSA is that this approach offers a straightforward way to 

model representational strength as a function of stimulus- or trial-level measures, such as image 

complexity and subjective familiarity. While these measures could be discretized into a much 

smaller number of bins (e.g., “low” and “high”), they are better treated as continuous variables to 

preserve meaningful variance. To simulate these scenarios, we generated data such that true 

representational strength monotonically decreased with an underlying continuous noise variable 

𝜎𝑡𝑟𝑖𝑎𝑙 that was measured by 𝑣𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 with construct validity 𝑟𝑣𝑎𝑙 = 𝐶𝑜𝑟(𝑣𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 , 𝜎𝑡𝑟𝑖𝑎𝑙). To 

perform cRSA, trials were post-hoc split into two conditions by performing a median split on 

𝑣𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 for each participant. Statistical inferences were again drawn for the difference in 

representational strength between the two conditions, using both cRSA and tRSAdiscrete. In 

addition, we also assessed the performance of tRSAcontinuous, where representational strength 

was directly predicted by the measured continuous variable 𝑣𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 without discretization.  

Specificity and sensitivity were first examined for datasets with various effect sizes. 

Across 10,000 iterations, cRSA had a Type I error rate (i.e., when 𝑟𝑣𝑎𝑙 = 0) close to the nominal 

rate of 5%, while both tRSAdiscrete and tRSAcontinuous showed significantly improved specificity (see 

Figure 6A). As construct validity and effect size of the trial-level measurement increased (i.e., 

more negative 𝑟𝑣𝑎𝑙), sensitivity expectedly improved for all methods. Relative to cRSA, 

tRSAcontinuous appeared to show slightly lower sensitivity for small effects (e.g., 𝑟𝑣𝑎𝑙 = −0.01), 

though it was also more conservative than cRSA with a lower chance of declaring significance 

in the incorrect direction (B<A). Moreover, tRSAcontinuous was the most sensitive method for 

moderate effects (e.g., 𝑟𝑣𝑎𝑙 = −0.04). We further probed the robustness of cRSA and tRSA 

across datasets that varied widely in the number of subjects and trial counts. Overall, we 

observed that the Type I error rates were stable around the nominal 5% for cRSA, as expected. 

However, both tRSAdiscrete and tRSAcontinuous demonstrated significantly enhanced specificity 

across all manipulations (see Figure 6B-D, Left). Sensitivity expectedly improved for all three 

approaches with increasing subject numbers and trial counts and hit the ceiling with enough 

samples, though tRSAcontinuous significantly outperformed other methods at smaller sample sizes, 

such as 10 participants with 200 trials each or 40 participants with 30 trials each (see Figure 

6B-C, Right). Additionally, we simulated scenarios in which subject-level trial counts were 

variable (e.g., missingness, exclusions), resulting in not only a reduction of total sample size but 

also additional variance in any subject-level estimates. The sensitivity of cRSA dropped 

substantially with this change because cRSA does not account for such variance, while tRSA-

based inferences were minimally impacted (see Figure 6D, Right).  
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Figure 6. Testing continuous modulations of representational strength with varying designs. The 
robustness of cRSA and tRSA were assessed in several variations of a base experimental design consisting of 40 
subjects and 200 unique stimuli presented once for each subject. Simulations varied in A) the true effect size of 
representational strength, B) number of subjects, C) trial count per subject, and D) the variance of trial count 
across subjects (assuming a fixed total). Three statistical tests were performed in each simulation: a paired-

sample t-test on the difference between “high” and “low” conditions (median-split of 𝑣𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) for cRSA, a linear 
mixed-effects model on the same condition difference for tRSAdiscrete, and a linear mixed-effects model on the 
effect of continuous variable 𝑣𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  for tRSAcontinuous. Statistical significance was determined with α = 0.05. The 
proportion of significant results was computed across 10,000 iterations. Type I error rates were computed 
regardless of the sign of the estimate. Type II error rates were computed only for the correct sign (+). Error bars 
indicate standard errors. In the left column for B through D, dashed horizontal lines mark the nominal α level of 
0.05, and dotted horizontal lines mark the critical values beyond which the estimated proportion would be 
significantly different from α. Asterisks indicate the significance level of the test of equal proportions between each 
tRSA approach and cRSA, *** p < 0.001, ** p < 0.01, * p < 0.05. 
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Summary of Experiment 1 

Collectively, our simulations offered three key insights into the commonalities and 

distinctions between our novel tRSA and the commonly implemented cRSA approaches. First, 

when the goal is to quantify the overall representational strength of the entire set of trials, tRSA 

produces estimates highly similar to those generated by cRSA. In other words, little information 

is lost in performing the trial-level computations (Figure 3). Second, tRSA is robust to variances 

that cRSA is agnostic to, such as imbalances in trial count between conditions and variability in 

trial count ratios across subjects. In almost all cases tRSA significantly outperformed cRSA in 

sensitivity (Figure 5). This outcome was expected, as the collapsing of trials in cRSA inevitably 

leads to the loss of important information regarding meaningful variances from other levels; 

tRSA is capable of properly modelling the multi-level variance structure. Third, tRSA is uniquely 

advantageous when neural representations are to be linked to continuous variables, rather than 

discrete conditions. The voided need for post-hoc discretization prevents additional loss of 

meaningful variance from the modulators, and tRSAcontinuous demonstrated significantly enhanced 

specificity and sensitivity over cRSA in a wide range of scenarios (Figure 6). 

 

Experiment 2: cRSA and tRSA comparison in fMRI data 

Trial-level RSA estimates for Perceptual and Mnemonic Processing 

The first goal of Experiment 2 was to compare the results from tRSA and cRSA approaches 

obtained from real fMRI data. We used fMRI data collected when participants implicitly named 

114 colored images of everyday objects in a white background (Object Perception; see Figure 

7A). Estimates of regional representational strength in the tRSA models were compared with 

mean cRSA values across participants, for each region of interest. Unsurprisingly, the tRSA 

model estimates and the cRSA mean correlation values demonstrated similar distributions 

(Figure 7B) and were highly correlated (Figure 7C). Critically, however, the two approaches 

yielded different results in terms of statistically significant regions. Specifically, the cRSA 

approach identified four significant regions in the LOC during Object Perception, whereas the 

tRSA approach identified two additional regions within the LOC (Table 1, Figure 7D, and 

Figure 7E). This discrepancy indicated the ability of tRSA to more accurately and robustly 

identify representational regions. 
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Figure 7. tRSA outperforms cRSA in identifying representational regions during object perception. A) 
Visualization of the Object Perception Task. The fMRI task required participants to view 114 labeled objects and rate 
how well the labels describe the objects on a scale of 1 to 4 (mean 3.59). B) Density plots (y-axis) of regional 
representational strengths (x-axis) for tRSA (model estimates, dark) and cRSA (mean correlation values, light). 
Regions with significant representational strength greater than zero (q < 0.05) are highlighted in red. C) Scatter plot 
showing the correlation between regional representational strengths from tRSA (model estimates, y-axis) and cRSA 
(mean correlation values, x-axis). Regions with significant tRSA representation are highlighted in red, and those 
significant in cRSA are outlined in red. The representational strength measures are highly correlated across regions (r 
= 0.98, p < 0.001). D) Bar graph of t-statistics for each of the 26 regions of interest. Representation t-statistics (y-axis) 
from cRSA (light) and tRSA (dark) across 26 regions of interest (x-axis). Regions significant after FDR correction (q < 
0.05) are highlighted in red. E) Brain regions with significant representation. Regions in light red were identified by the 
tRSA and cRSA. Regions in dark red were identified by the tRSA method only. 

 

Table 1. Representation regions identified by cRSA and tRSA. 

 
cRSA tRSA 

REGION SubArea 
Coordinates 

(x, y, z) 
Mean SE t Values p q coeff SE t Values p q 

LEFT 

IPL 

A40c, caudal 

area 40(PFm) 
-56, -49, 38 -0.002 0.006 -0.276 0.785 0.887 0.000 0.005 -0.039 0.969 0.980 

RIGHT 

IPL 

A40c, caudal 

area 40(PFm) 
57, -44, 38 0.000 0.008 0.053 0.958 0.992 0.001 0.006 0.199 0.843 0.914 
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LEFT 

IPL 

A39rv, 

rostroventral 

area 39(PGa) 

-47, -65, 26 0.012 0.009 1.273 0.212 0.394 0.010 0.007 1.461 0.154 0.307 

RIGHT 

IPL 

A39rv, 

rostroventral 

area 39(PGa) 

53, -54, 25 0.012 0.008 1.511 0.141 0.333 0.013 0.007 1.901 0.066 0.215 

LEFT 

ITC 

A20iv, 

intermediate 

ventral area 20 

-45, -26, -27 0.002 0.007 0.352 0.727 0.859 0.003 0.005 0.533 0.598 0.777 

LEFT 

ITC 

A20r, rostral 

area 20 
-43, -2, -41 -0.011 0.007 -1.383 0.178 0.357 -0.006 0.006 -1.027 0.314 0.510 

LEFT 

ITC 

A20il, 

intermediate 

lateral area 20 

-56, -16, -28 -0.011 0.006 -1.722 0.095 0.309 -0.008 0.005 -1.587 0.123 0.278 

RIGHT 

ITC 

A20iv, 

intermediate 

ventral area 20 

46, -14, -33 -0.010 0.007 -1.385 0.176 0.357 -0.008 0.005 -1.563 0.128 0.278 

RIGHT 

ITC 

A20r, rostral 

area 20 
40, 0, -43 0.005 0.006 0.781 0.442 0.676 0.002 0.005 0.419 0.679 0.824 

RIGHT 

ITC 

A20il, 

intermediate 

lateral area 20 

55, -11, -32 -0.011 0.007 -1.642 0.111 0.320 -0.009 0.006 -1.660 0.107 0.277 

LEFT 

ITC 

A37elv, 

extreme 

lateroventral 

area37 

-51, -57, -15 -0.003 0.007 -0.470 0.642 0.859 0.000 0.006 0.025 0.980 0.980 

LEFT 

ITC 

A37vl, 

ventrolateral 

area 37 

-55, -60, -6 0.003 0.007 0.418 0.679 0.859 0.007 0.005 1.331 0.193 0.358 

LEFT 

ITC 

A20cl, 

caudolateral of 

area 20 

-59, -42, -16 0.013 0.008 1.569 0.127 0.329 0.011 0.006 1.728 0.094 0.271 

LEFT 

ITC 

A20cv, 

caudoventral of 

area 20 

-55, -31, -27 0.006 0.009 0.657 0.516 0.746 0.005 0.007 0.765 0.450 0.651 

RIGHT 

ITC 

A37elv, 

extreme 

lateroventral 

area37 

53, -52, -18 -0.006 0.007 -0.807 0.426 0.676 -0.002 0.006 -0.354 0.726 0.824 

RIGHT 

ITC 

A37vl, 

ventrolateral 

area 37 

54, -57, -8 0.000 0.007 0.010 0.992 0.992 0.002 0.006 0.350 0.729 0.824 

RIGHT 

ITC 

A20cl, 

caudolateral of 

area 20 

61, -40, -17 0.000 0.008 -0.019 0.985 0.992 0.005 0.007 0.696 0.492 0.673 

RIGHT 

ITC 

A20cv, 

caudoventral of 

area 20 

54, -31, -26 0.007 0.007 0.983 0.333 0.577 0.008 0.006 1.233 0.227 0.393 

LEFT 

LOC 

mOccG, middle 

occipital gyrus 
-31, -89, 11 0.021 0.011 2.015 0.053 0.196 0.022 0.009 2.345 0.023 0.086 

LEFT 

LOC 

V5/MT+, area 

V5/MT+ 
-46, -74, 3 0.032 0.010 3.126 0.004 0.033 0.030 0.009 3.440 0.002 0.010 

LEFT 

LOC 

OPC, occipital 

polar cortex 
-18, -99, 2 -0.004 0.010 -0.393 0.697 0.859 0.008 0.010 0.772 0.442 0.651 
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LEFT 

LOC 

iOccG, inferior 

occipital gyrus 
-30, -88, -12 0.024 0.009 2.560 0.016 0.067 0.027 0.009 3.115 0.003 0.013 

RIGHT 

LOC 

mOccG, middle 

occipital gyrus 
34, -86, 11 0.038 0.009 4.082 0.000 0.004 0.038 0.008 4.533 0.000 0.001 

RIGHT 

LOC 

V5/MT+, area 

V5/MT+ 
48, -70, -1 0.026 0.006 4.139 0.000 0.004 0.024 0.006 3.933 0.000 0.004 

RIGHT 

LOC 

OPC, occipital 

polar cortex 
22, -97, 4 0.025 0.010 2.573 0.015 0.067 0.030 0.010 3.128 0.003 0.013 

RIGHT 

LOC 

iOccG, inferior 

occipital gyrus 
32, -85, -12 0.028 0.009 3.018 0.005 0.033 0.029 0.009 3.334 0.001 0.010 

 

Subject-level variance not accounted for by cRSA 

The second goal of Experiment 2 was to demonstrate the utility of tRSA in accounting for the 

heterogeneity in subject-level variance. In the main Memory Retrieval task, experimental trials 

were categorized as “Hit” or “Miss” based on participants’ memory success, and the exact 

number of trials in each condition varied widely across participants (Figure 8A, Bottom). 

Importantly, the difference in the number of trials had a strong impact on the estimation of 

representational strength (see Figure 2). Participants with fewer trials in a given condition 

exhibited a noticeably wider distribution of representational strength values across ROIs in that 

condition, indicating that trial count was a substantial source of across-subject variance indeed 

(see Figure 8B). Moreover, trial count was also negatively associated with the standard 

deviation of representational strengths across ROIs, for both Hit trials (rho = -0.37, p = 0.043) 

and Miss trials (rho = -0.71, p < 0.001). However, this subject-level variance is often not 

accounted for in subsequent group-level t-test or ANOVA, which assumes that each participant 

contributes equally reliable estimates (i.e., homoscedasticity). Indeed, CVFs were much higher 

for participants with more extreme Hit to Miss trial counts (rho = 0.45, p = 0.016; see Figure 

8C).  

This issue of neglected heteroscedasticity remains when conditional contrasts (e.g., Hit 

minus Miss) are computed. Given the nonlinear relationship between trial counts and the 

reliability of correlations (see Figure 2), a more extreme trial imbalance (e.g., 100 Hits and 10 

Misses, versus 70 Hits and 40 Misses) would also lead to a less reliable estimate of the 

difference. To demonstrate this issue in real fMRI data, we computed the CVF for each 

participant, measuring how much their Hit-Miss contrast in representational strength estimates 

deviated from the group mean. Indeed, CVFs were much higher for participants with more 

extreme Hit to Miss trial counts (rho = 0.45, p = 0.016; see Figure 8C). Critically, the two 

participants with Hit to Miss ratios < 1 were excluded from this correlation (since in those cases 
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we would expect an increased CVF), but their data points are included in the corresponding 

figure for transparency.  

 

 

Figure 8. Unmodeled within- and between-participant variance in cRSA for mnemonic representations. A) 
Top: Visualization of the main memory task. Participant recognition and judgement confidence was tested for 144 
concepts (114 “old”, 30 “new”). Bottom: Stacked bar plots with the number of “Hit” (blue) and “Miss” (gray) trials (y-
axes) for each participant (x-axis). Participants were sorted by their hit to miss ratio in descending order. B) Density 
plots of cRSA representational strength (y-axes) across the 26 ROIs (x-axes) for Hits (blue) and Misses (gray) for 
each participant, sorted by descending Hit-to-Miss count ratio. The Hit-to-Miss ratios were displayed in the top-left 
corner of each subplot, with the font color transitioning from blue (indicating more Hits) to gray (indicating more 
Misses). C) Scatter plot illustrating the influence of the Hit-to-Miss ratio (x-axis) on the participant CVFs (y-axis). The 
Spearman’s correlation was significant, with a coefficient of 0.45 and a p-value of 0.016. Two participants are marked 
X and were excluded from this correlation as their Hit-to Miss ratio is less than 1. D) Density plots (y-axis) of cRSA 
representational strength across participants for Hits (blue) and Misses (gray). E) Regions exhibiting significant cRSA 
mnemonic representation (Hits > Misses). Regions highlighted in blue were significant after FDR correction with q < 
0.05. Regions in gray were significant at p < 0.05 but did not survive FDR correction. 

Additionally, the distributions of representational strengths for Hits and Misses across 

participants were unequal. Since most participants had more Hit trials than Miss trials (Hit-to-

Miss Ratio mean = 3.7, median = 3.1), the distribution of representational strength values was 

broader for misses compared to hits (Figure 8D). Ultimately, results from cRSA revealed 

significant mnemonic representation in one right LOC region and one right anterior ITC region, 

with two additional ITC regions showing trend-level significance (Table 2, Figure 8E); these 

outcomes were revisited in comparison to the tRSA approach below. Together, these results 

demonstrate that cRSA failed to model the across-subject variance in real fMRI data, which 

stemmed from the inevitable variability in trial count ratios affecting the reliability of each 
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participant’s cRSA contrast estimates. The violation of statistical assumptions challenged the 

interpretability of standard t-tests in detecting representational regions.  

Subject-level variance accounted for by tRSA 

We also sought to assess how the tRSA approach would improve the estimates of 

representational strength for memory success. The mixed-effects models used to test tRSA 

mnemonic representations supporting retrieval identified four significant mnemonic 

representation regions: one in the right LOC and three in the right ITC (Table 2, Figure 9A, and 

Figure 9B). While the t-statistics for tRSA and cRSA showed a correlation across ROIs (Figure 

9C), the tRSA approach, which produced trial-level estimates of representational strength, was 

able to detect mnemonic representation regions that the cRSA approach did not. This result 

demonstrated the enhanced sensitivity of tRSA in identifying subtle differences in 

representational strength. Moreover, a region in the LOC, initially considered a mnemonic 

representation region by the cRSA method — largely due to data from participants with low miss 

trial counts (Appendix 2 Table 4) — was correctly excluded from being classified as such by 

tRSA (Figure 9A, Figure 9B). This result highlighted tRSA’s improved specificity in the 

identification of true mnemonic representation regions by reducing potential biases introduced 

by variances in trial counts that went neglected by cRSA. 

 

 

Figure 9. tRSA outperforms cRSA in detecting mnemonic representations. A) Bar graph of t Statistics for each 
of the 26 regions of interest. Mnemonic representation t-statistics (y-axis) from cRSA (light) and tRSA (dark) across 
26 regions of interest (x-axis). Regions that are significant after FDR correction (q < 0.05) are highlighted in blue. B) 
Brain regions with significant mnemonic representation identified by tRSA are shown in blue. The region that was 
significant in cRSA but not in tRSA is depicted in light blue. C) Scatter plot of t-statistics calculated from tRSA (y-axis) 
and cRSA (x-axis), showing a significant Pearson correlation (r = 0.49, p = 0.010). Significant tRSA regions are 

highlighted in blue. Significant cRSA regions are outlined in light blue.  

 

 

 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2025. ; https://doi.org/10.1101/2025.03.27.645646doi: bioRxiv preprint 

https://doi.org/10.1101/2025.03.27.645646
http://creativecommons.org/licenses/by/4.0/


34 

Table 2. Mnemonic representation regions identified by cRSA and tRSA. 

 
cRSA tRSA 

REGION SubArea 
Coordinates 

(x, y, z) 
Mean SE t Values p q coeff SE t Values p q 

LEFT IPL 
A40c, caudal 

area 40(PFm) 
-56, -49, 38 

0.011 -0.012 0.967 0.341 0.617 -0.003 0.005 -0.583 0.560 0.661 

RIGHT 

IPL 

A40c, caudal 

area 40(PFm) 
57, -44, 38 

0.006 -0.002 0.325 0.747 0.747 0.002 0.005 0.445 0.656 0.742 

LEFT IPL 

A39rv, 

rostroventral 

area 39(PGa) 

-47, -65, 26 

0.020 -0.011 1.418 0.167 0.546 0.008 0.005 1.842 0.066 0.213 

RIGHT 

IPL 

A39rv, 

rostroventral 

area 39(PGa) 

53, -54, 25 

0.007 -0.015 1.048 0.303 0.607 0.005 0.005 1.024 0.306 0.612 

LEFT ITC 

A20iv, 

intermediate 

ventral area 

20 

-45, -26, -27 

0.010 -0.014 1.250 0.221 0.546 0.004 0.005 0.764 0.445 0.661 

LEFT ITC 
A20r, rostral 

area 20 
-43, -2, -41 

-0.022 -0.044 0.894 0.379 0.617 0.005 0.005 1.081 0.280 0.606 

LEFT ITC 

A20il, 

intermediate 

lateral area 20 

-56, -16, -28 

0.003 -0.011 0.498 0.623 0.704 -0.003 0.005 -0.599 0.549 0.661 

RIGHT 

ITC 

A20iv, 

intermediate 

ventral area 

20 

46, -14, -33 

0.002 -0.011 0.555 0.584 0.690 0.013 0.005 2.678 0.007 0.048 

RIGHT 

ITC 

A20r, rostral 

area 20 
40, 0, -43 

0.015 -0.051 3.289 0.003 0.039 0.014 0.005 2.704 0.007 0.048 

RIGHT 

ITC 

A20il, 

intermediate 

lateral area 20 

55, -11, -32 

0.003 -0.020 1.203 0.239 0.546 0.009 0.005 1.886 0.059 0.213 

LEFT ITC 

A37elv, 

extreme 

lateroventral 

area37 

-51, -57, -15 

0.024 0.007 0.903 0.374 0.617 0.001 0.005 0.285 0.776 0.841 

LEFT ITC 

A37vl, 

ventrolateral 

area 37 

-55, -60, -6 

0.012 -0.007 0.825 0.416 0.636 -0.006 0.005 -1.272 0.203 0.481 

LEFT ITC 

A20cl, 

caudolateral 

of area 20 

-59, -42, -16 

0.014 0.030 -0.727 0.473 0.683 0.004 0.005 0.783 0.434 0.661 

LEFT ITC 

A20cv, 

caudoventral 

of area 20 

-55, -31, -27 

0.021 -0.016 1.582 0.125 0.541 0.001 0.005 0.147 0.883 0.918 

RIGHT 

ITC 

A37elv, 

extreme 

lateroventral 

area37 

53, -52, -18 

0.006 -0.019 1.265 0.216 0.546 0.009 0.005 1.978 0.048 0.213 

RIGHT 

ITC 

A37vl, 

ventrolateral 

area 37 

54, -57, -8 

0.001 -0.013 0.664 0.512 0.684 0.003 0.005 0.663 0.508 0.661 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2025. ; https://doi.org/10.1101/2025.03.27.645646doi: bioRxiv preprint 

https://doi.org/10.1101/2025.03.27.645646
http://creativecommons.org/licenses/by/4.0/


35 

RIGHT 

ITC 

A20cl, 

caudolateral 

of area 20 

61, -40, -17 

0.008 -0.036 2.137 0.041 0.268 0.008 0.005 1.767 0.077 0.223 

RIGHT 

ITC 

A20cv, 

caudoventral 

of area 20 

54, -31, -26 

0.013 -0.031 2.353 0.026 0.222 0.014 0.005 3.043 0.002 0.048 

LEFT 

LOC 

mOccG, 

middle 

occipital gyrus 

-31, -89, 11 

0.030 -0.001 1.169 0.252 0.546 0.003 0.004 0.661 0.509 0.661 

LEFT 

LOC 

V5/MT+, area 

V5/MT+ 
-46, -74, 3 

0.022 0.013 0.451 0.655 0.710 0.003 0.005 0.740 0.459 0.661 

LEFT 

LOC 

OPC, occipital 

polar cortex 
-18, -99, 2 

0.028 -0.004 1.294 0.206 0.546 0.000 0.004 -0.035 0.972 0.972 

LEFT 

LOC 

iOccG, inferior 

occipital gyrus 
-30, -88, -12 

0.001 0.010 -0.393 0.697 0.725 0.004 0.005 0.783 0.433 0.661 

RIGHT 

LOC 

mOccG, 

middle 

occipital gyrus 

34, -86, 11 

0.016 0.000 0.642 0.526 0.684 0.004 0.004 0.860 0.390 0.661 

RIGHT 

LOC 

V5/MT+, area 

V5/MT+ 
48, -70, -1 

0.009 -0.037 1.995 0.056 0.289 0.013 0.005 2.867 0.004 0.048 

RIGHT 

LOC 

OPC, occipital 

polar cortex 
22, -97, 4 

0.026 -0.062 3.461 0.002 0.039 0.008 0.005 1.875 0.061 0.213 

RIGHT 

LOC 

iOccG, inferior 

occipital gyrus 
32, -85, -12 

0.005 -0.004 0.556 0.583 0.690 0.006 0.004 1.411 0.158 0.412 

 

Estimations of continuous modulators 

Our final goal was to assess the utility of tRSA in testing hypotheses regarding continuous 

modulators of representational strength. Here, we focused on the effect of item memorability, a 

stimulus-level variable (see Figure 10A). The tRSA approach successfully detected continuous, 

stimulus-level modulation of representational strength during Object Perception, when 

participants were engaged in basic-level naming of color objects displayed on a white 

background; notably, no memory task was engaged before or during this phase of the 

experiment. Four regions within the LOC showed significant modulation by Perceptual 

Memorability, a measure based on average responses in the Perceptual Retrieval task (see 

Table 3 and Figure 10B). While not the explicit focus of this analysis, the analyses also 

identified significant effects of the nuisance variables, Conceptual Memorability, and reaction 

time in five regions of interest (Appendix 2 Table 6) within the LOC. These regions are often 

associated with processing the constituent categories or visual features of an object (Tyler et al., 

2013), and consistent with the view that the memorability of images can be predicted by 

statistical properties of semantic features (Bainbridge, 2022; Hovhannisyan et al., 2021; Kramer 

et al., 2023). 
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Figure 10. tRSA captures stimulus-level modulations on representation. A) Distribution of Item Memorability. 
Density plot of memorability values demonstrates a wide distribution of memorability scores (i.e., the average 
confidence of remembering a particular item). This stimulus-level variance is an underexplored target of 
representational analyses. B) Cortical representational effects of Memorability. Relationship between item-level 
Memorability and representational strength, as assessed with tRSA, for each of the 26 regions of interest. Trial-level 
representational strength estimates from Object Perception were significantly modulated by a continuous, stimulus-
level measure of Item Memorability in four regions (blue). The t-statistics for this modulation were plotted (y-axis) 
across regions of interest (x-axis). 

 

Table 3. Continuous modulation in tRSA. 

REGION SubArea 
Coordinates 

(x, y, z) 
coeff SE t Values p q 

LEFT IPL 
A40c, caudal 

area 40(PFm) 
-56, -49, 38 

-0.036 0.072 -0.496 0.620 0.949 

RIGHT IPL 
A40c, caudal 

area 40(PFm) 
57, -44, 38 

0.038 0.069 0.547 0.584 0.949 

LEFT IPL 

A39rv, 

rostroventral 

area 39(PGa) 

-47, -65, 26 

-0.015 0.068 -0.227 0.820 0.949 

RIGHT IPL 

A39rv, 

rostroventral 

area 39(PGa) 

53, -54, 25 

-0.001 0.071 -0.018 0.986 0.986 

LEFT ITC 

A20iv, 

intermediate 

ventral area 20 

-45, -26, -27 

0.044 0.071 0.621 0.534 0.949 

LEFT ITC 
A20r, rostral 

area 20 
-43, -2, -41 

0.025 0.079 0.315 0.752 0.949 

LEFT ITC 

A20il, 

intermediate 

lateral area 20 

-56, -16, -28 

0.068 0.072 0.955 0.340 0.949 

RIGHT ITC 

A20iv, 

intermediate 

ventral area 20 

46, -14, -33 

-0.013 0.074 -0.177 0.860 0.949 

RIGHT ITC 
A20r, rostral 

area 20 
40, 0, -43 

-0.046 0.078 -0.587 0.558 0.949 
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RIGHT ITC 

A20il, 

intermediate 

lateral area 20 

55, -11, -32 

0.021 0.071 0.290 0.771 0.949 

LEFT ITC 

A37elv, 

extreme 

lateroventral 

area37 

-51, -57, -15 

0.029 0.071 0.409 0.682 0.949 

LEFT ITC 

A37vl, 

ventrolateral 

area 37 

-55, -60, -6 

0.105 0.075 1.405 0.160 0.694 

LEFT ITC 

A20cl, 

caudolateral of 

area 20 

-59, -42, -16 

-0.014 0.068 -0.201 0.841 0.949 

LEFT ITC 

A20cv, 

caudoventral of 

area 20 

-55, -31, -27 

-0.027 0.069 -0.389 0.698 0.949 

RIGHT ITC 

A37elv, 

extreme 

lateroventral 

area37 

53, -52, -18 

-0.073 0.071 -1.022 0.307 0.949 

RIGHT ITC 

A37vl, 

ventrolateral 

area 37 

54, -57, -8 

0.011 0.070 0.156 0.876 0.949 

RIGHT ITC 

A20cl, 

caudolateral of 

area 20 

61, -40, -17 

-0.003 0.072 -0.038 0.970 0.986 

RIGHT ITC 

A20cv, 

caudoventral of 

area 20 

54, -31, -26 

-0.036 0.072 -0.506 0.613 0.949 

LEFT LOC 
mOccG, middle 

occipital gyrus 
-31, -89, 11 

0.255 0.080 3.166 0.002 0.012 

LEFT LOC 
V5/MT+, area 

V5/MT+ 
-46, -74, 3 

0.258 0.071 3.614 0.000 0.008 

LEFT LOC 
OPC, occipital 

polar cortex 
-18, -99, 2 

0.276 0.089 3.113 0.002 0.012 

LEFT LOC 
iOccG, inferior 

occipital gyrus 
-30, -88, -12 

0.019 0.083 0.223 0.823 0.949 

RIGHT 

LOC 

mOccG, middle 

occipital gyrus 
34, -86, 11 

0.201 0.082 2.456 0.014 0.073 

RIGHT 

LOC 

V5/MT+, area 

V5/MT+ 
48, -70, -1 

0.089 0.077 1.149 0.251 0.931 

RIGHT 

LOC 

OPC, occipital 

polar cortex 
22, -97, 4 

0.277 0.089 3.107 0.002 0.012 

RIGHT 

LOC 

iOccG, inferior 

occipital gyrus 
32, -85, -12 

0.040 0.083 0.485 0.628 0.949 

 

Summary of Experiment 2 

Three key takeaways from Experiment 2 mirrored those from Experiment 1. First, while access 

to ground truths was not possible with empirical fMRI datasets, results from tRSA and cRSA 

approaches showed a relatively high degree of correspondence as before (Figure 7C). 
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Nonetheless, modeling trial-level estimates from tRSA showed improved sensitivity to neural 

representations in the Object Perception dataset, as the tRSA model was able to weigh study 

subjects with different numbers of trials appropriately (Figure 7D). Second, in the Memory 

Retrieval dataset, participants had unbalanced and heterogenous distributions of trial counts in 

two conditions (“Hits” and “Misses”), as expected with any psychological task focusing on 

subject performance (Figure 8A). The outcome of tRSA’s improved characterization can be 

seen in multiple empirical outcomes: tRSA was able to detect mnemonic representation regions 

that the cRSA approach missed (improved; sensitivity Figure 9B), and afforded more 

appropriate weighting of participant’s contrast estimates while maintaining similar outcome 

statistics as cRSA (Figure 9C). Third, tRSA supported the investigation of research questions 

that cannot be readily addressed with cRSA, namely the trial- or stimulus-level modulations of 

representational strength. We demonstrated this point using Item Memorability — a stable 

stimulus property that is thought to contribute to memory independently of task context, 

experimental context, or individual differences. Representational strength in several regions in 

the ventral stream varied continuously with stimulus-level memorability (Figure 10B). Moreover, 

model-fits became the strongest when the models also incorporated trial-level variables such as 

fMRI run and reaction time. These findings showed that the representational strength estimates 

produced by tRSA indeed captured the multi-level variance structure in the data and that tRSA 

can be implemented to study item-specific or trial-level modulators of representational strength 

effectively.  

 

Discussion 

This paper formally presents tRSA — a novel technique for evaluating the strength of neural 

representation at the level of individual experimental trials. The performance of tRSA was 

evaluated and compared to that of cRSA using both simulations (Experiment 1) and empirical 

fMRI datasets (Experiment 2). Three principal insights can be drawn from these analyses. First, 

tRSA produces highly similar estimates of overall representational strength as cRSA such this 

new approach comes with little cost in efficacy. Second, tRSA is robust to subject-level 

variances that would be neglected by cRSA, namely the trial count differences across subjects. 

With both simulations and empirical datasets, tRSA demonstrated enhanced sensitivity over 

cRSA in detecting true effects. Third, tRSA provides an opportunity to examine continuous 

modulators of representational strength with decent specificity and sensitivity. With the empirical 

fMRI dataset, we demonstrated that tRSA was able to detect significant associations between 
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representational strength and item-level memorability, as well as trial-level nuisance variables. 

Below we discuss the methodological and conceptual implications of the tRSA approach for the 

field of cognitive neuroscience and beyond.  

 

Similarities between cRSA and tRSA 

Since the advent of cRSA, the method has been widely implemented in studies of neural 

representations with great success (Dimsdale-Zucker & Ranganath, 2018; Kriegeskorte et al., 

2008). Our first and foremost objective was to ensure that our novel tRSA technique produces 

estimates of representational strength that are comparable to cRSA. This objective was 

achieved in both Experiment 1 (simulations) and Experiment 2 (real fMRI data). Simulations 

suggested that tRSA and cRSA estimates reacted in very similar ways to manipulations of the 

number of subjects, trial counts, and noise level. While some numerical differences were 

observed when tRSA was computed across different conditions and compared to within-

condition cRSA, the range of divergences remained small and did not adversely impact 

subsequent statistical testing. Analyses with real fMRI datasets corroborated their 

correspondence, showing highly similar distributions of estimated representational strength 

across the brain. These results confirm that our novel tRSA approach performs at least no 

worse than cRSA. In other words, researchers can confidently replace their existing cRSA 

analyses with the tRSA framework, not having to be concerned about the loss of information or 

inferior statistical performance. In general, our analyses with both simulations and real fMRI 

datasets demonstrated several important advantages of tRSA over cRSA in a wide range of 

scenarios.  

 

Methodological significance 

Statistically, tRSA is designed to properly capture the multi-level variance structure in the data, 

yielding improved specificity and sensitivity. An important motivation of ours for devising this 

novel tRSA technique accords with a steady emergence in many scientific fields that advocates 

for proper treatments of the multi-level variance structure in the data (Dedrick et al., 2009; 

Winter & Grice, 2021; Yarkoni, 2022). As laid out in the Introduction, we argue that (at least) 

four independent sources of variance contribute to how strongly a given neural system 

represents a single event (e.g., looking at an image of “basketball”): condition-level, subject-

level, stimulus-level, and trial-level.  
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Subject-level variance was a major focus of analysis in both Experiments. Research 

subjects are samples (ideally, random and representative) drawn from some population of 

interest. Barring quantifiable individual differences that may be relevant to the cognitive 

functions being studied (e.g., age, education, personality traits), subjects are considered to vary 

randomly around the population-level mean, which is often the focus of analysis. In cRSA, 

subject-level estimates of representational strength or condition differences are typically entered 

into a general linear model where homoscedasticity is assumed (e.g., t-test). However, this 

assumption is easily violated due to heterogeneity in subject-level trial counts, resulting in 

unreliable model outputs. Indeed, artificially induced variability in trial counts led to catastrophic 

reductions in the sensitivity of cRSA (Experiment 1). Empirical studies that select trials based on 

subjective performance or expect to have extensive missingness or exclusions must be wary of 

this problem, as we demonstrated the same issue of cRSA using real fMRI data from an 

episodic memory study (Experiment 2). Critically, tRSA proved to be more robust to this subject-

level heteroscedasticity issue in both Experiments, for trial count information was available to 

the subsequent models with subjects entered as random factors (Yarkoni, 2022).  

Stimulus-level variance was another focus of our investigations. A major advantage of 

RSA over multivariate pattern classification techniques is that it allows the use of “condition-rich” 

experimental designs with large and diverse collections of stimuli, so long as meaningful 

hypotheses can be constructed in the form of an RSMmodel (Kriegeskorte et al., 2008). For 

instance, using an RSMmodel based on human similarity judgments, past work has implemented 

RSA on neuroimaging data collected with nearly two thousand unique natural object images 

(THINGS database; Hebart et al., 2023). Various stimulus properties have also been the target 

of neural representation research, such as the real-world size of objects (T. Huang et al., 2022), 

the geographical location of landmarks (Morton et al., 2021), or more abstractly, visual and 

semantic features of naturalistic images (Devereux et al., 2018; Jozwik et al., 2023; Naspi et al., 

2021). Despite such prevalent appreciation for the neurocognitive relevance of stimulus 

properties, cRSA does not account for the fact that the same stimulus (e.g., “basketball”) is seen 

by multiple subjects and produces statistically dependent data. With tRSA, this issue is at least 

partially addressed by modeling stimulus identity as random effects, resulting in generalizability 

and reliability (Chen et al., 2021; Yarkoni, 2022). Admittedly, a complete resolution of this 

stimulus-as-fixed-effect fallacy would require stimulus information to be incorporated in any 

preceding procedures, including first-level models of fMRI data (Westfall et al., 2017); while 

beyond the scope of the current paper, these relevant analytical pipelines may be integrated for 

a full solution of the fallacy. Furthermore, as demonstrated in Experiment 2, tRSA supports the 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 1, 2025. ; https://doi.org/10.1101/2025.03.27.645646doi: bioRxiv preprint 

https://doi.org/10.1101/2025.03.27.645646
http://creativecommons.org/licenses/by/4.0/


41 

straightforward investigation of how representational strength varies with stimulus-level 

properties such as memorability. With the flexibility of tRSA, future studies may freely explore 

other interesting stimulus-level research questions.  

Of note, in the current paper, we only examined experimental designs where each 

unique stimulus is presented once, i.e., no repetitions. Repetitions are sometimes included as 

targets to which participants should respond, in order to promote engagement level (Allen et al., 

2022; Chang et al., 2019; Lahner et al., 2024). Additionally, some preprocessing or modeling 

procedures use repetitions to improve the accuracy of their estimates of neural activity 

responses and representations (Charest et al., 2018; Prince et al., 2022), though the 

effectiveness of this approach may depend on various other factors (Ritchie et al., 2021). 

Importantly, repetitions have been found to robustly induce neural activity adaptation or 

repetition suppression in task-relevant brain regions (Barron et al., 2016; Grill-Spector et al., 

2006), and this phenomenon has profound impacts on multi-voxel activity patterns as well 

(Mazurchuk et al., 2023). While beyond the scope of the current paper, we briefly mention two 

possible treatments of stimulus repetitions in implementing tRSA. For one, repetitions can be 

collapsed in first-level models of brain recordings for more reliable estimations of stimulus-

specific neural activations; in this case, any subsequent analyses including tRSA can simply 

proceed as if individual stimuli are only presented once. Alternatively, repetitions can also be 

kept as separate events for which individual tRSA estimates are assigned; this option allows 

one to probe the stability of neural representations across time and repetitions. In either case, 

our tRSA approach can flexibly suit the various goals of research.  

Trial-level variance refers to the effect on the estimations of neural representations by 

factors that vary from trial to trial. For example, attention level fluctuates during the task and 

changes the fidelity of neural representations (Aly & Turk-Browne, 2016; Rothlein et al., 2018). 

Like stimulus-level variance, trial-level variance is not accounted for by cRSA as the comparison 

of RSMs collapses across trials. In our simulations, we demonstrated that tRSA can indeed 

capture trial-level variance and reliably estimate its effect on representational strength 

(Experiment 1). In a real fMRI dataset, we found that reaction time, a trial-level nuisance 

variable, also had statistically significant effects on representational strength (Experiment 2). In 

addition, past research has found that pure physiological changes in pupillary size, cardiac 

rhythm, and respiration may also influence both neural and cognitive processes (Critchley & 

Garfinkel, 2018; van der Wel & van Steenbergen, 2018). While a portion of those effects could 

be due to the incomplete removal of artifacts during signal preprocessing, some physiological 
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changes may also have intriguing neurocognitive relevance that is worth exploring in future 

studies.  

 

Conceptual significance 

Fundamentally, approaching RSA at the level of individual trials is an advancement in terms of 

not only methodology (discussed above) but also conceptualization. The notion of neural 

representation, albeit used more broadly than the phrase is intended to, emphasizes the link 

between the representee (contents being represented, such as stimuli or memories) and its 

representative (alternative format of the content, such as neural activity) (Baker et al., 2022; 

Favela & Machery, 2023; Vilarroya, 2017). Collapsing trial-level information in its formulation, 

cRSA could only indicate the quality of a kind of representation or the overall representational 

strength across events. Instead, tRSA provides a measure that directly corresponds to the 

conceptualization of representation, with each trial or event receiving its own estimated 

representational strength. This level of analysis is consistent with previous studies that focused 

on quantifying the similarity of multi-voxel activity patterns across different trials (S. Huang, Faul, 

et al., 2024; Wing et al., 2020; Yu et al., 2024) and at different stages of memory (Ritchey et al., 

2013; Shao et al., 2023). As such, tRSA provides a versatile tool for inquiring about many 

different brain-behavior relationships at an appropriate level of analysis and with straightforward 

interpretations (Becker et al., 2024; Howard et al., 2024; Morales-Torres et al., 2024; Naspi et 

al., 2023; Pacheco-Estefan et al., 2024). Notably, tRSA is not limited to neuroimaging data; past 

research has also implemented this approach to perform item-specific analyses on behavioral 

data (Walsh & Rissman, 2023).  

At a broader level, the tRSA approach also engenders a host of other innovative 

techniques. The emerging research on representational connectivity focuses on the intersection 

of representational information and functional connectivity analyses, and seeks to uncover new 

multivariate views on how concepts are distributed across the brain (Anzellotti & Coutanche, 

2018). Using the tRSA approach, trial-level representational strength values from any pair of 

brain regions may be correlated to yield their model-based representational connectivity (S. 

Huang, De Brigard, et al., 2024; Karimi-Rouzbahani et al., 2022). Trial-level representational 

strength values may also be combined with other trial-level measures of neural activity such as 

univariate activation to probe diverse inter-regional interactions that are theoretically motivated 

(S. Huang, Howard, et al., 2024).  
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Conclusion 

We present a comprehensive overview and diagnostics of a trial-level approach to 

representational similarity analysis, termed tRSA. With both simulations and real fMRI datasets, 

we have demonstrated that tRSA properly captures the multi-level variance structure in the 

data, shows improved and robust specificity and sensitivity, and offers flexible modeling options. 

We believe that tRSA is an important advancement of the generic RSA implementation, both 

methodologically and conceptually, and we hope that this innovation provides a versatile and 

useful tool for digging deeper into the fascinating complexity of cognition.  
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Appendices 

Appendix 1. Comparing across-condition and within-condition tRSA 

Given discrete experimental conditions, tRSA could be formulated either within each condition 

or across all conditions. In within-condition tRSA, one would generate condition-specific RSMs, 

e.g., one set of 𝑛𝐴 × 𝑛𝐴 RSMs for Condition A and another set of 𝑛𝐵 × 𝑛𝐵 RSMs for Condition B, 

and compute the two sets of within-condition tRSA values separately. These tRSA estimates 

are then subjected to subsequent analysis. In across-condition tRSA, RSMs are generated 

across all trials in all conditions, and tRSA estimates are computed as if there were no multiple 

conditions. Then, tRSA estimates are categorized based on the condition they belong to in any 

subsequent analysis.  

We advocate for the use of across-condition tRSA for its enhanced statistical reliability 

over within-condition tRSA. One major limitation of within-condition tRSA is its vulnerability to 

small and variable trial counts. Suppose that a condition contains 𝑛 trials, cRSA would use 

𝑛(𝑛 − 1)/2 observations to compute its estimate, whereas within-condition tRSA could only use 

𝑛 − 1 observations. This effective sample size could turn out to be fairly small and variable in 

practice (see Figure 8A, Bottom), resulting in unreliable estimates (see Figure 2). On the 

contrary, across-condition tRSA suffers much less from this issue, since most experiments 

should have been designed to have an adequate total trial count.  

Another theoretical advantage of across-condition tRSA is that it better corresponds to 

tRSAcontinuous, i.e., analyses in which trial-level representational strength estimates are 

hypothesized to be modulated by some continuous variable such as memorability or reaction 

time. In both across-condition tRSA and tRSAcontinuous, full RSMs are used to estimate 

representational strength before any discrete condition effect or continuous modulation effect is 

assessed.  

Appendix 1 Figure 11 below summarizes the differences between within-condition and 

across-condition tRSA outcomes in a series of simulations. Notably, while within-condition tRSA 

estimates showed better numerical correspondence with cRSA estimates, they are less reliable 

than across-condition tRSA, as evidenced by the wider spread of estimates.  
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𝒏𝑨 ∶  𝒏𝑩 𝒃𝑩−𝑨 = 𝟎 𝒃𝑩−𝑨 > 𝟎 𝒃𝑩−𝑨 < 𝟎 

20:20 

  

(equivalent to left) 

80:80 

  

(equivalent to left) 

20:80 

   

80:320 

   

 

Appendix 1 Figure 11. Comparing across-condition and within-condition tRSA. Each cell depicts descriptive 
statistics of different RSA methods from 10,000 simulations. Cells differ in raw trial counts (20, 80, or 320 in a given 
condition), balance of trial counts between conditions (balanced or unbalanced), and effect (A = B, A > B, or A < B). 
In each cell, the top scatter plots depict condition-level tRSA estimates (y-axis; blue, within-condition; orange, 
across-condition) against cRSA estimates (x-axis), whereas the bottom scatter plots depict the standard deviations 
of trial-level representational strength estimates from across-condition tRSA (y-axis) and within-condition tRSA (x-
axis).  
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Appendix 2. Supporting data and results for Experiment 2 

Appendix 2 Table 4. Behavioral results. Bold indicates participants excluded from Conceptual Retrieval Analyses. 

Participant Gender 
Response Trials at 

Perception 
ROC Count of Hits  Hit Rate 

1 M 114 0.84 84 0.74 

2 W 114 0.73 82 0.78 

3 W 105 0.70 32 0.36 

4 W 112 0.93 94 0.82 

5 W 114 0.95 85 0.76 

6 W 96 0.74 84 0.79 

7 W 108 0.93 99 0.88 

8 W 114 0.56 76 0.75 

9 M 113 0.81 89 0.78 

10 M 101 0.79 64 0.80 

11 M 101 0.93 78 0.80 

12 W 113 0.66 53 0.50 

13 M 114 0.87 89 0.78 

14 W 103 0.69 35 0.39 

15 M 114 0.84 75 0.66 

16 W 114 0.67 51 0.45 

17 W 113 0.35 26 0.30 

18 W 114 0.83 75 0.66 

19 W 114 0.90 100 0.88 

20 W 114 0.71 68 0.60 

21 W 114 0.89 80 0.70 

22 W 114 0.90 99 0.89 

23 W 113 0.83 93 0.82 
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Appendix 2 Table 5. Model selection using 3 criteria: Akaike information criterion (AIC), Bayesian information criterion 
(BIC), and log-liklihood ratio testing (LRT). 

      
(1+adjHvM|Subject + 
(1+adjHvM|StimID) (1+adjHvM|Subject)+(1|StimID) (1|Subject)+(1|StimID) 

REGION SubArea 
Coordinates 

(x, y, z) 
AIC BIC 

LRT 
pvalue 

AIC BIC 
LRT 

pvalue 
AIC BIC 

LRT 
pvalue 

LEFT IPL 
A40c, caudal area 

40(PFm) 
-56, -49, 38 -4778 -4724 - -4781 -4739 0.555 -4784 -4754 0.600 

RIGHT 
IPL 

A40c, caudal area 
40(PFm) 

57, -44, 38 -4632 -4578 - -4614 -4571 0.000 -4639 -4608 1.000 

LEFT IPL 
A39rv, rostroventral 

area 39(PGa) 
-47, -65, 26 -4907 -4852 - -4910 -4867 0.674 -4914 -4883 0.819 

RIGHT 
IPL 

A39rv, rostroventral 
area 39(PGa) 

53, -54, 25 -4765 -4710 - -4768 -4726 0.909 -4772 -4742 0.969 

LEFT ITC 
A20iv, intermediate 

ventral area 20 
-45, -26, -27 -4786 -4731 - -4790 -4747 1.000 -4788 -4758 0.079 

LEFT ITC 
A20r, rostral area 

20 
-43, -2, -41 -4188 -4134 - -4187 -4145 0.117 -4191 -4161 0.858 

LEFT ITC 
A20il, intermediate 

lateral area 20 
-56, -16, -28 -4808 -4753 - -4806 -4764 0.064 -4809 -4779 0.663 

RIGHT 
ITC 

A20iv, intermediate 
ventral area 20 

46, -14, -33 -4526 -4472 - -4529 -4487 0.623 -4533 -4502 0.716 

RIGHT 
ITC 

A20r, rostral area 
20 

40, 0, -43 -3940 -3886 - -3942 -3901 0.510 -3944 -3914 0.337 

RIGHT 
ITC 

A20il, intermediate 
lateral area 20 

55, -11, -32 -4554 -4500 - -4558 -4516 0.982 -4562 -4532 0.974 

LEFT ITC 
A37elv, extreme 

lateroventral area37 
-51, -57, -15 -4920 -4865 - -4924 -4881 1.000 -4924 -4894 0.214 

LEFT ITC 
A37vl, ventrolateral 

area 37 
-55, -60, -6 -4946 -4891 - -4949 -4907 0.875 -4953 -4923 0.875 

LEFT ITC 
A20cl, caudolateral 

of area 20 
-59, -42, -16 -5003 -4949 - -5005 -4962 0.297 -5007 -4977 0.476 

LEFT ITC 
A20cv, 

caudoventral of 
area 20 

-55, -31, -27 -4867 -4812 - -4871 -4828 0.996 -4873 -4843 0.413 

RIGHT 
ITC 

A37elv, extreme 
lateroventral area37 

53, -52, -18 -4933 -4878 - -4935 -4892 0.301 -4936 -4906 0.352 

24 W 110 0.70 64 0.62 

25 M 114 0.87 84 0.74 

26 M 95 0.62 71 0.75 

27 M 114 0.75 81 0.71 

28 M 109 0.95 100 0.88 

29 W 106 0.72 81 0.79 

30 W 114 0.92 95 0.86 

31 M 114 0.74 79 0.69 

32 W 109 0.62 50 0.50 
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RIGHT 
ITC 

A37vl, ventrolateral 
area 37 

54, -57, -8 -4875 -4821 - -4877 -4835 0.366 -4881 -4850 0.865 

RIGHT 
ITC 

A20cl, caudolateral 
of area 20 

61, -40, -17 -4617 -4563 - -4619 -4576 0.291 -4623 -4592 0.966 

RIGHT 
ITC 

A20cv, 
caudoventral of 

area 20 
54, -31, -26 -4683 -4628 - -4685 -4642 0.293 -4688 -4657 0.679 

LEFT 
LOC 

mOccG, middle 
occipital gyrus 

-31, -89, 11 -5123 -5068 - -5127 -5084 0.941 -5128 -5097 0.259 

LEFT 
LOC 

V5/MT+, area 
V5/MT+ 

-46, -74, 3 -4820 -4765 - -4824 -4782 0.996 -4827 -4797 0.631 

LEFT 
LOC 

OPC, occipital polar 
cortex 

-18, -99, 2 -5046 -4991 - -5049 -5006 0.595 -5052 -5022 0.818 

LEFT 
LOC 

iOccG, inferior 
occipital gyrus 

-30, -88, -12 -4959 -4904 - -4962 -4919 0.516 -4966 -4935 0.929 

RIGHT 
LOC 

mOccG, middle 
occipital gyrus 

34, -86, 11 -5265 -5210 - -5269 -5227 1.000 -5271 -5241 0.440 

RIGHT 
LOC 

V5/MT+, area 
V5/MT+ 

48, -70, -1 -4879 -4824 - -4881 -4839 0.382 -4883 -4852 0.279 

RIGHT 
LOC 

OPC, occipital polar 
cortex 

22, -97, 4 -4995 -4940 - -4989 -4946 0.007 -4991 -4961 0.472 

RIGHT 
LOC 

iOccG, inferior 
occipital gyrus 

32, -85, -12 -5126 -5071 - -5126 -5083 0.144 -5129 -5098 0.618 

    
% Selected 4% 0% 8% 0% 0% 0% 96% 100% 92% 

 

 

Appendix 2 Table 6. Significant nuisance effects in memorability model. 

 
Conceptual Memorability Reaction Time 

REGION SubArea 
Coordinates 

(x, y, z) 
Mean SE t Values p q coeff SE t Values p q 

LEFT 

IPL 

A40c, caudal 

area 40(PFm) 
-56, -49, 38 

0.077 0.060 1.274 0.203 0.659 0.005 0.004 1.369 0.171 0.869 

RIGHT 

IPL 

A40c, caudal 

area 40(PFm) 
57, -44, 38 

-0.053 0.057 -0.931 0.352 0.773 0.007 0.004 1.731 0.084 0.869 

LEFT 

IPL 

A39rv, 

rostroventral 

area 39(PGa) 

-47, -65, 26 

-0.019 0.056 -0.341 0.733 0.866 0.005 0.004 1.433 0.152 0.869 

RIGHT 

IPL 

A39rv, 

rostroventral 

area 39(PGa) 

53, -54, 25 

-0.039 0.059 -0.666 0.506 0.773 0.010 0.004 2.482 0.013 0.869 

LEFT 

ITC 

A20iv, 

intermediate 

ventral area 20 

-45, -26, -27 

-0.052 0.059 -0.876 0.381 0.773 0.004 0.004 1.101 0.271 0.869 

LEFT 

ITC 

A20r, rostral 

area 20 
-43, -2, -41 

-0.051 0.065 -0.780 0.436 0.773 -0.004 0.004 -0.846 0.397 0.869 

LEFT 

ITC 

A20il, 

intermediate 

lateral area 20 

-56, -16, -28 

-0.053 0.060 -0.893 0.372 0.773 0.004 0.004 0.889 0.374 0.869 

RIGHT 

ITC 

A20iv, 

intermediate 

ventral area 20 

46, -14, -33 

0.017 0.061 0.278 0.781 0.867 0.002 0.004 0.556 0.578 0.869 

RIGHT 

ITC 

A20r, rostral 

area 20 
40, 0, -43 

0.029 0.065 0.444 0.657 0.854 0.000 0.004 0.016 0.987 0.869 
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RIGHT 

ITC 

A20il, 

intermediate 

lateral area 20 

55, -11, -32 

-0.053 0.059 -0.887 0.375 0.773 0.002 0.004 0.439 0.661 0.869 

LEFT 

ITC 

A37elv, 

extreme 

lateroventral 

area37 

-51, -57, -15 

-0.044 0.059 -0.750 0.453 0.773 0.004 0.004 1.050 0.294 0.869 

LEFT 

ITC 

A37vl, 

ventrolateral 

area 37 

-55, -60, -6 

-0.043 0.062 -0.682 0.495 0.773 -0.003 0.004 -0.627 0.531 0.869 

LEFT 

ITC 

A20cl, 

caudolateral of 

area 20 

-59, -42, -16 

0.009 0.057 0.165 0.869 0.869 0.002 0.004 0.529 0.597 0.869 

LEFT 

ITC 

A20cv, 

caudoventral of 

area 20 

-55, -31, -27 

0.032 0.057 0.550 0.582 0.797 0.001 0.004 0.218 0.827 0.869 

RIGHT 

ITC 

A37elv, 

extreme 

lateroventral 

area37 

53, -52, -18 

0.034 0.059 0.580 0.562 0.797 0.000 0.004 0.015 0.988 0.869 

RIGHT 

ITC 

A37vl, 

ventrolateral 

area 37 

54, -57, -8 

-0.012 0.059 -0.210 0.834 0.867 -0.007 0.004 -1.662 0.097 0.869 

RIGHT 

ITC 

A20cl, 

caudolateral of 

area 20 

61, -40, -17 

0.022 0.060 0.366 0.714 0.866 -0.001 0.004 -0.137 0.891 0.869 

RIGHT 

ITC 

A20cv, 

caudoventral of 

area 20 

54, -31, -26 

0.013 0.060 0.221 0.825 0.867 -0.004 0.004 -0.909 0.363 0.869 

LEFT 

LOC 

mOccG, middle 

occipital gyrus 
-31, -89, 11 

-0.233 0.067 -3.473 0.001 0.005 0.015 0.005 3.199 0.001 0.033 

LEFT 

LOC 

V5/MT+, area 

V5/MT+ 
-46, -74, 3 

-0.193 0.059 -3.241 0.001 0.006 0.008 0.004 2.093 0.036 0.033 

LEFT 

LOC 

OPC, occipital 

polar cortex 
-18, -99, 2 

-0.259 0.074 -3.516 0.000 0.005 0.017 0.005 3.359 0.001 0.033 

LEFT 

LOC 

iOccG, inferior 

occipital gyrus 
-30, -88, -12 

-0.054 0.069 -0.779 0.436 0.773 0.011 0.005 2.371 0.018 0.869 

RIGHT 

LOC 

mOccG, middle 

occipital gyrus 
34, -86, 11 

-0.224 0.068 -3.286 0.001 0.006 0.015 0.005 3.361 0.001 0.033 

RIGHT 

LOC 

V5/MT+, area 

V5/MT+ 
48, -70, -1 

-0.089 0.064 -1.388 0.165 0.614 0.006 0.004 1.311 0.190 0.869 

RIGHT 

LOC 

OPC, occipital 

polar cortex 
22, -97, 4 

-0.296 0.074 -3.987 0.000 0.002 0.014 0.005 2.867 0.004 0.033 

RIGHT 

LOC 

iOccG, inferior 

occipital gyrus 
32, -85, -12 

-0.099 0.069 -1.439 0.150 0.614 0.012 0.005 2.610 0.009 0.869 
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Table 7. Significant nuisance effects in memorability model. 
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