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Abstract 

How the brain organizes semantic information is one of the most challenging and 

expansive questions in cognitive neuroscience. To shed light on this issue, prior studies have 

attempted to decode how the brain represents concepts. We instead examined how relational 

information is encoded, which we pursued by submitting texts to a contemporary large language 

model and extracting relational embeddings from the model. Using behavioral data (N = 636), we 

found these embeddings capture independent information about scenes and objects, along with 

relational information on their semantic links. Turning to fMRI data (N = 60), we leveraged these 

embeddings for representational similarity analysis: The occipitotemporal cortex represents 

concepts in isolation, whereas the dorsolateral prefrontal cortex and basal ganglia principally 

encode relational information. Relational coding within prefrontal and striatal areas also tracks 

how participants reason about scenes and objects. Altogether, this research maps how information 

progresses from concept-level to integrative forms and how this translates into behavior. 

Keywords: Associations, representation, large language models, semantics, fMRI 
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1. Introduction 

Humans make sense of the world by mapping sensory information to concepts, which are 

embedded within complex semantic networks describing said concepts and their relations.  

Understanding the structure of these semantic networks has long been a central goal of cognitive 

neuroscience. Network structure can be modeled from human ratings of concepts’ similarity,1,2 

from examining concepts’ overlapping features3, or increasingly from analysis of concepts’ 

positions within the semantic spaces defined by machine learning algorithms.4–7 For example, 

word embeddings for “football” and “basketball” gathered from a tool like word2vec may indicate 

that these two items, due to sharing common contexts and functions, are semantically similar.7 If a 

brain region likewise displays similar activation patterns when viewing a football or a basketball, 

then one can infer that the region encodes semantic information. This approach to studying neural 

information, formalized as representational similarity analysis (RSA), has proven transformative 

for clarifying the organization of concepts in the brain.8 However, most representational studies 

overlook a crucial aspect of semantics: the mechanisms by which the brain encodes the 

multifaceted semantic relationships between concepts – e.g., the information common across egg-

chicken and seed-tree relationships. Abstract relationships like these go beyond generic similarity 

and differ in fundamental ways from the types of concept-level information typically investigated 

by studies on representation. Yet, relational information is just as (if not more) fundamental to 

semantic processing and executive reasoning in humans.9,10  

A comprehensive understanding of the brain’s coding requires considering the different 

forms of information represented. Significant progress has been made in clarifying concept 

representation – e.g., RSA demonstrates that ventral stream (occipitotemporal) regions robustly 

encode perceptual and semantic features of visual stimuli.11–13 By contrast, work on relational 

coding is less developed, and the results on this topic are less precise. Associative memory 
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research shows that heightened hippocampal and medial entorhinal activity when viewing a pair of 

stimuli strengthens binding and improves recall of which items appeared together.14–16 However, it 

remains unknown what mechanisms humans use to encode the semantics of how items are related. 

Semantic analogy tasks approach this issue, and meta-analyses on such tasks show that relational 

reasoning specifically upregulates dorsolateral prefrontal cortex (dLPFC) and basal ganglia (BG) 

(caudate head) activity.17 Tasks requiring reasoning about spatial and numerical relations further 

engage the angular gyrus and intraparietal sulcus.18,19 These different regions may coordinate to 

support relational processing via frontal-basal-thalamic loops and cortical networks,20–24 although 

none of this earlier work has attempted to model relational information as done by RSA studies 

mapping concept representation. This gap limits the differentiation of regions encoding relational 

information (multivariate effect) from those facilitating it (univariate effect). 

We propose that modern large language models (LLMs) offer an ideal tool to study how 

people represent the relationship between concepts. Unlike word-embedding methods, which are 

based on words’ usages within small context windows (e.g., word2vec or GloVe), contemporary 

LLMs are trained on longer texts and rely on a transformer architecture that models word 

interactions in a generalizable manner. LLMs accomplish this using ‘attention’ layers that compute 

how two words are related and move information between words. When processing a text like “In 

the pavement, a weed,” an LLM encodes not only the independent meaning of pavement and weed, 

but also how pavement is relevant to weed – e.g., weeds exist in the cracks of pavement, which is a 

relational feature that could be similarly expressed for “In the city, a rat”. The complete pavement-

weed relation can be seen as a collection of such relational features – a distributed coding scheme 

describing LLM processing,25 which parallels the coding seen in human semantic networks.3  

LLMs will simultaneously encode a text’s concept-level and its relation-level information. 

This dual function is both a strength and a weakness. Because of this multifaceted processing, 
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prior studies have found strong correlations between LLMs’ internal states and the brain data of 

humans reading lengthy texts.26–28 However, this approach will also create ambiguity, as these 

prior studies’ results reflect an unclear mix of concept and relational representation, severely 

limiting neuroscientific conclusions.  

The present research aims to distinguish the coding of concepts and relations, which we 

accomplish by employing an original approach to LLM-based analysis. To isolate the behavioral 

and neural representations of relations, independent of their constituent objects, we use an LLM to 

parse standardized statements mentioning just two stimuli. We extract the LLM’s internal states to 

produce embeddings, which we distill to only relational information. For instance, to model the 

pavement-weed semantic relation, we generate an embedding for “In the pavement, a weed” and 

effectively subtract concept vectors for pavement and weed alone. This strategy is inspired by 

earlier work subtracting features from embeddings.29,30 Below, we show how this strategy 

eliminates all measurable concept-level information from the embedding while retaining its 

relational content. RSA can then be done with either pure concept or pure relational embeddings to 

disentangle these semantic dimensions. 

Our investigation proceeds in two phases. In Study 1, we examined conceptual 

representation and first analyzed behavioral data to validate that embeddings generated using a 

modern LLM accurately capture human-reported concept semantics. We next conducted RSA 

using the LLM concept embeddings and fMRI data from participants viewing object stimuli in 

isolation, expecting to replicate extant work on the ventral stream’s role in concept representation. 

In Study 2, we focused on relational representation. We begin with behavioral analysis to validate 

that embeddings based on LLMs capture human-reported relational information. We expect that 

modern LLMs will impart particularly large improvements in modeling relational information 

compared to older techniques like word2vec or BERT, pointing to LLMs fundamentally changing 
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modeling capabilities rather than being incremental improvements. We then performed RSA using 

LLM-based embeddings for scene-object relations, applied to fMRI data from participants who 

reasoned about pictures of scenes and objects. We expected to identify brain regions that 

principally encode relational content and differ from those leading concept coding. We expected to 

additionally identify areas where the strength of relational representation predicts participants’ 

judgment in the scene-object task (e.g., stronger representation predicts improved task 

performance), linking relational coding to behavior. By examining these different aspects of 

information processing, we aim to shed light on how the brain’s different areas cooperate to 

support general semantic processing.  

2. Results 

2.1. Study 1. Mapping concept representation in the brain 

Our first study investigated concept representation and is divided into two parts: Study 1A 

evaluates the efficacy of our LLM approach for defining concept embeddings. We specifically 

measured the correspondence between embeddings generated via Llama 3.2-3B and an existing 

database of propositional concept features developed through human studies. Study 1B then 

examined fMRI data from tasks where participants viewed objects in isolation. The results are 

expected to outline the structure of concept representation. 

2.1.1. Study 1A. Behavioral analysis and validation of LLM-based concept embeddings 

We first evaluated concept-level semantics using public data from a normative study on 

object features (https://mariamh.shinyapps.io/dinolabobjects/).31 In the study, 566 participants saw 

pictures of 995 everyday objects and were asked to generate properties (or features) describing 

each image (e.g., shown an apple, a participant may respond “is edible”). For the present analysis, 

a simple text was crafted for each object containing only an article/determiner and the object’s 

name (e.g., “An apple”). Each text was submitted to the open-source LLM, Llama 3.2-3B (28 

https://mariamh.shinyapps.io/dinolabobjects/
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layers). Embeddings were defined as the LLM’s residual stream activity at the final token position, 

computed either for single layers or while pooling multiple middle layers (layers 4-16). Using the 

embeddings, support vector machines (SVMs) were separately fit for each of the fifty most 

common features in the dataset, predicting whether a given object had (1) or did not have (0) said 

feature (Figure 1A). The resulting accuracies were compared to those of SVMs fit based on 

objects’ word2vec embeddings. For fair comparisons, the LLM embeddings were reduced to 300 

dimensions (same as word2vec) using principal component analysis before classification. 

 

Figure 1. Representation of isolated item semantics by LLMs. A. Illustration of the approach, where short 

item texts were submitted to Llama 3.2-3B, and embeddings were extracted from the residual stream at the 

last token position. For the fifty most common features in the dataset, separate SVMs were fit to predict 

whether a particular object has or does not have a given feature. Accuracy was evaluated using 10-

repeated 5-fold cross-validation while omitting objects randomly so that chance accuracy is 50%. As a 

comparison, classification was also tested using word2vec embeddings. B. The bars here represent the 

cross-validated accuracy for each of the fifty features, using embeddings that concatenate layer 4-16 

activity. Blue indicates an accuracy advantage by Llama 3.2-3B over word2vec, whereas red indicates the 

opposite. C. Accuracy is shown, averaged across the different features using embeddings based on singular 

layers. D. Layer-by-layer accuracy separately for each feature is presented here; only twenty features are 

shown for visual clarity.  

 

The LLM embeddings predicted nearly every feature at above-chance accuracy  

(mean [M] = 79.5%), consistently surpassing the accuracy of word2vec-based predictions  



8 

 

(M = 75.6%) (Figures 1B-D). The Llama 3.2-3B accuracy also consistently surpassed predictions 

based on embeddings from a historic transformer model (BERT), tested with the same procedures  

(M = 69.0%). Contemporary LLM embeddings thus robustly capture concept-level semantics. 

This correspondence with human-reported semantic information further suggests that LLM 

embeddings may be more interpretable and cognitively meaningful than embeddings based on 

older techniques.  

We conducted similar tests using alternative LLMs, which surpassed the accuracies of 

word2vec and BERT: Llama 2-7B (M = 79.4%), Llama 3.3-70B-Instruct (M = 79.6%), Qwen 2.5-

72B (M = 78.6%), and DeepSeek V2-Lite (16B; M = 78.8%). These alternative models are all 

based on transformers but differ in size and other implementation or training details. The 

consistently high accuracy levels show how accurate semantic representation is a general property 

of modern LLMs. We proceed with Llama 3.2-3B, as it is the leanest, can be readily run on a 

consumer computer, and appears sufficient for high-quality concept modeling, positioning it well 

for cognitive and neuroscientific research. 

2.1.2. Study 1B. Neural analysis of concept representation using objects 

 Having demonstrated the strength of LLM-based embeddings for modeling human-

reported semantic features, we turn to analyzing the representation of concepts in the brain. Here, 

we rely on fMRI data collected during each task of a multi-stage experiment on how humans 

encode conceptual and relational information. The stages consisted of: (1) an object naming task, 

(2) a task where participants judged the link between an object and a scene, (3) a conceptual 

recognition task for object memory, and (4) a visual recognition task for object memory. Study 2 

will later focus on relational representation in the second task, which is the most unique element of 

the design and makes the dataset well-suited for our overarching aims of mapping concept and 

relational representation. However, for Study 1B, we focused on just tasks 1, 3, and 4, where 
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participants viewed isolated objects, and we use the fMRI data generated from these tasks to 

examine single concept representation. 

Standard RSA was first performed with the embeddings generated by submitting isolated 

object texts ("An {object}") to Llama 3.2-3B (Figure 2A). Based on these embeddings, across-trial 

correlations were used to construct a 114 × 114 representational similarity matrix (RSM) for each 

participant and task stage. Corresponding neural similarity matrices (NSMs) were produced for 

246 Brainnetome-atlas regions of interest (ROIs) by correlating voxel-wise activity across trials. 

For each ROI, second-order RSM × NSM Spearman correlations were next calculated for all sixty 

participants and three isolated-object task stages (180 correlations). These correlations were next 

averaged by participant (60 mean correlations). For group-level analysis of each ROI, those sixty 

points were submitted to a one-sample t-test. This yielded strong RSA effects throughout the 

occipital and inferior temporal lobes – areas known to represent objects (Figure 2B).11–13 The 

shown results are based on LLM embeddings that pool across layers 4-16, although examining 

single-layer embeddings likewise showed that effects were nominally strongest in the occipital and 

inferior temporal lobes (Figure 2B). These LLM-based RSA effects were notably stronger than 

the RSA results associated with older models, such as word2vec, GloVe (a variant of word2vec), 

BERT, or SimCSE (a variant of BERT) (Figure 2C).  
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Figure 2. Single concept semantics RSA. A. For each of the 114 objects presented in the task, a text was 

prepared and submitted to Llama 3.2-3B. The LLM’s residual stream was extracted and concatenated 

across layers 4-16 to produce embeddings. Across-trial correlations between the embeddings were 

computed to form model RSMs, and corresponding fMRI NSMs were formed via correlations between 

trials’ voxel-wise activity patterns. A separate NSM was produced for each Brainnetome atlas ROI (246 

ROIs in total). Second-order RSM x NSM correlations were computed, averaged across the three task 

stages by participant, then submitted to a group-level one-sample t-test. B. This t-test yielded significant 

effects in the ROIs here; all results are false-discovery rate corrected for 246 tests (pcorrected < .05).  

C. Layer-by-layer RSA results are also provided for four large-scale areas (NSMs computed based on 

pooling voxels among all constituent ROIs; see Methods for anatomical definitions). 

Note that we have pooled data from all three isolated object tasks to maximize statistical 

power and because we do not have any hypotheses specific to any specific task. However, 

analyses of solely, for instance, the object-naming task yielded similar results: significant  

(pcorrected < .05) effects across 33 occipitotemporal ROIs and 17 parietal ROIs, while effects 

elsewhere are sparse. Overall, the strong LLM patterns and consistency with the established RSA 

literature on object processing11–13 speak to the validity of the LLM approach and set the 

foundation for more diverse and novel directions. 
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2.2. Study 2. Mapping relational representation in the brain 

Study 2 focused on the representation of relational semantics, and like above, this study is 

divided into two parts: Study 2A evaluated the capacity for LLM-based embeddings to capture this 

relational information using the behavioral data from the scene-object task from the multi-stage 

experiment mentioned previously. Study 2B then applied these embeddings for mapping the brain 

regions responsible for encoding relational information. The brain investigation focuses on 

contrasting the regions performing relational coding from those noted above on concept coding. 

2.2.1. Study 2A. Behavioral analysis and validation of LLM-based relational embeddings 

Our behavioral analyses focus on a task where participants reasoned about a scene and 

object. Specifically, participants were shown a picture of a recognizable scene followed by an 

object (e.g., a farm followed by a tractor or a bathroom followed by a chainsaw). For each pair, 

participants rated the likelihood of finding the object in the scene using a 4-point scale (1 = “Very 

unlikely”, 4 = “very likely”). The task was designed to elicit the full ratings by including scene-

object pairs selected to be incongruent, neutral, or congruent (one-third each; see Methods). In 

total, 60 participants each rated 114 scene-object combinations (342 unique pairs overall).  

The present analyses used LLM embeddings to predict each scene-object pair’s mean 

likelihood rating, averaged across subjects. Scene-object embeddings were created by submitting 

two crafted texts (“At the {scene}, an {object}” and “An {object} was in a {scene}”) to Llama 3.2-

3B (Figure 3A); see Methods for discussion and additional results of text crafting. The LLM’s 

residual stream was extracted at the final token positions, concatenated across layers 4-16, and 

averaged across the two texts. The resulting embeddings were submitted to a ridge regression 

predicting the average human-reported pair likelihood; a ridge regression was used, rather than a 

standard linear regression, as there are more embedding dimensions (36,864) than examples (342), 

which would saturate a standard regression. 
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Figure 3. Representation of relational semantics by LLMs. A. Illustration of the approach, where simple 

scene-object texts were submitted to Llama 3.2-3B, and embeddings were extracted from the residual 

stream at the last token’s position, concatenated across layers 4-16. B. The embeddings strongly predicted 

scene-object pairs’ associated human-reported likelihood of finding the object in the scene. C. Similarity 

between the scene and object word2vec embeddings less predicted similarity. D. The correlations between 

human-reported likelihood and each of the LLM’s 36,864 states’ activations (12 layers × 3072 internal 

states per layer) are shown here as a histogram. For reference, the distribution of correlations that would 

arise from random data is shown by the dashed line (a zero-centered normal distribution). 

The LLM embeddings strongly predicted scene-object ratings (R2 = .71; Figure 3B). This 

rate far surpassed what older transformer models like BERT achieve (R2 = .07) and also exceeded 

predictions based on the correlational similarity between scene and object word2vec embeddings 

(R2 = .36; Figure 3C). Note, word2vec’s disadvantage does not stem from non-normality in the 

data, as a Spearman correlation between word2vec similarity and scene-object ratings yielded a 

weaker effect (ρ = .58, ρ2 = .33). Word2vec’s disadvantage also does not stem from it being a 

scalar, and submitting the 300-element difference between object and scene vectors to a ridge 

regression produced null predictions (R2 < 0). Thus, we have strong evidence that the embeddings 

from a modern LLM uniquely and robustly describe the relatedness between scenes and objects. 

The LLM embeddings’ accurate predictions are rooted in multivariate relational 

information. That is, scene-object likelihood positively correlated with activity in some LLM 

dimensions but negatively correlated with others (Figure 3D). Statistically, this occurred 

significantly more often than expected from a zero-centered null distribution of correlations 
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(Kurtosis: K = 0.64, p << .001). This pattern can be explained by different directions in the 

embedding describing different ways that two items can be related. Preliminary exploratory 

analyses showed this using a toy dataset producing embeddings of crafted texts “An {animal} and 

a {food}”. An SVM trained on the embeddings can significantly predict the a priori relational 

feature “would eat” (1 for a carnivore with meat or an herbivore with food and 0 otherwise). 

Hence, this narrow relational proposition is expressed by the LLM. A full embedding may 

describe many relational features like these, much like how the dimensions of an item embedding 

describe different item features.  

2.2.2. Study 2B. Neural analysis of relational representation 

RSA was conducted using the fMRI data collected during the aforementioned scene-object 

task. In each trial, participants viewed a scene and then an object, and RSA was conducted during 

the screen where the object was shown (Figure 4A). Before conducting tests using relational 

embeddings, we performed concept-level RSA for object and scene representations. Concept-level 

RSA for just the object’s representation (“An {object}”) yielded ventral stream results like those 

identified in Study 1B (Figure 4B). Concept-level RSA was also done for the presented scene’s 

representation (“A {scene}” embedding); note that the brain measurements are based on the screen 

where the object was shown, and the present analysis thus taps into how participants maintained 

the scene representation in working memory. Focusing on scene representation implicated new 

regions: namely, the inferior parietal lobule (IPL) along with medial parietal structures, such as the 

retrosplenial cortex, now showed the strong effects (Figure 4B). Additionally, the dLPFC and 

middle temporal gyrus (MTG) emerged, pointing to the involvement of the frontoparietal control 

network (FPCN). This network is often characterized by this triplet of regions (IPL-LPFC-MTG) 

involved in working memory.32–34 Yet, it remains unanswered how people specifically represent 

the scene-object relation. 
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Figure 4. Scene and object item semantics RSA. A. Concept-level RSA was performed as in Study 1B, but 

now for scene and object representations of the scene-object task. B. Scene RSA and object RSA were 

performed independently, generating the results shown here (one-sample t-tests evaluating whether the 

average second-order correlation across participants is positive); shown results are false-discovery rate 

corrected (pcorrected < .05). Note that the task was designed such that a third of scene-object pairs were 

incongruent (left pair, neutral, or congruent. This aspect of the task is further investigated later in the 

results (see also Methods). 

To understand how the brain parses scene-object relationships, we submitted to Llama 3.2-

3B crafted texts involving both the scene and object, as in behavioral Study 2A: “At the {scene}, 

an {object}” and “An {object} is at the {scene}” with LLM responses averaged across the two texts 
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to form an embedding (Figure 5A). To eliminate concept-level information, the embedding was 

mean-centered relative to the two other scene-object embeddings involving the same object – e.g., 

the mean of the desert-table and farm-table embeddings was subtracted from the prison-table. The 

same was also done with respect to the two other object-subtracted embeddings with the same 

scene. To confirm that the relational embeddings contain no concept-level information, we 

returned to the fMRI data from Study 1B on the isolated object tasks. These tasks presented no 

scenes, so RSA using these relational embeddings should produce no significant effects. This is 

indeed the case: all 246 ROIs yielded puncorrected ≥ .05, suggesting that there may even be a slight 

bias away from single-concept effects. Hence, our mean-centering strategy removes all 

measurable concept-level information and produces a pure relational embedding.  
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Figure 5. Relational semantics RSA. A. For each scene-object trial, two texts mentioning the scene and 

object were crafted and submitted to Llama 3.2-3B to produce an embedding, as for the Figure 3 relational 

behavior analysis. Each embedding pools data across layers 4-16 and was mean-centered with respect to 

other embeddings containing the same object or scene to eliminate concept-level information. B. The 

mean-centered embeddings were used for RSA, and the brain plots here show regions displaying significant 

relational representation per one-sample t-tests. C. As a point of comparison, the overall concept-level 

representation of the scene and object was modeled by summing scene and object concept embeddings and 

used for RSA. D. Paired t-test results are illustrated, comparing RSA effects to distinguish ROIs primarily 

representing relational semantics from those primarily representing single concept semantics. As this 

analysis is a subtler evaluation than the one-sample t-tests, ROIs’ voxels were pooled based on their 

Brainnetome atlas regional labels (e.g., the six L superior frontal gyrus ROIs were combined into one large 

ROI), which increased statistical power. Results are false-discovery rate corrected (pcorrected < .05). E. Not 

visualized in the prior brain plots, three basal ganglia ROIs yielded significant effects: the L globus 

pallidus (GP), L ventral putamen (vPU), L ventral caudate (vCA). F. Bar graphs show the relational-

embedding RSA effect in the basal ganglia, based on pooling voxels across all twelve basal ganglia ROIs. 

Each dot represents the second-order correlation of one participant. **, p < .01. 

Analyzing the scene-object task using relational embeddings, RSA effects were strongest 

in dorsal and lateral areas (Figure 5B), particularly in the IPL and LPFC. Notably, significant 

MTG representation emerged, while its neighboring superior and inferior temporal gyri displayed 

null effects. Together with the IPL and LPFC, this set of regions is further striking evidence for the 

relevancy of the FPCN. To distinguish areas principally involved in relational versus single-

concept processing, the relational RSA effects were contrasted to the earlier scene and object 

concept RSA effects. The overall degree of concept-level representation was modeled by 

performing RSA with respect to the sum of isolated object (“An {object}”) and scene (“A {scene}”) 

embeddings (Figure 5C). Then, paired t-tests compared the second-order relational RSA and 

concept RSA correlations, which yielded a dissociation:  the ventral stream specializes in parsing 

concept semantics while the frontal lobe predominantly parses relational semantics (Figure 5D).  

Alongside these cortical patterns, several BG structures also showed significant relational 

representation (Figures 5E & 5F). These BG effects are peculiar, as these regions are often linked 

to the establishment of motor associations,35,36 but not typically to the encoding of semantic 

relational representations. The BG would be further analyzed as we shifted to examining how 

relational representation impacts cognition and behavior. 
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2.2.3. Linking neural relational information to scene-object judgments 

If the patterns put forth reflect relational processing as generally construed, then stronger 

modeled representations should be associated with greater understanding by participants and 

improved performance in the task. This is a stricter hypothesis than those tested thus far and 

examines how our modeling captures cognitive processing. To test this, we examined participants’ 

scene-object likelihood ratings in each trial. As mentioned in Study 2A, participants used a 4-point 

scale to rate how likely the presented object would be found in the presented scene. The scene-

object pairs were designed to elicit high/congruent (farm-tractor), medium/neutral (prison-fork), or 

low/incongruent (cafeteria-rose) likelihood ratings. Hence, our present analyses quantify 

performance in each trial as normative fit, which was computed as the absolute difference between 

participants’ ratings and the expected rating for each category (high: 4; medium: 2.5; low: 1).  

Predicting trial-wise outcomes requires also modeling the degree of relational 

representation on a trial-by-trial basis. To accomplish this, a second-order correlation was 

computed for each trial between its corresponding NSM row and relational RSM row – illustrated 

in Figure 6A (see also earlier work using this approach12,37). For each participant, a within-subject 

correlation was taken between their normative fit and representational strength measures in each 

trial. These correlations were submitted to a group-level one-sample t-test, which demonstrated 

several significant effects (Figure 6B): The regions displaying the strongest correlations between 

relational representation and normative fit were the left and right premotor cortex, followed by 

dorsal PFC, with weaker significant effects in inferior parietal cortex and the middle temporal 

gyrus. Complementing the earlier L BG results, relational representation in the L BG also 

significantly predicted normative fit (pooling across L BG ROIs: t[59] = 2.96, pcorrected < .05); 

uncorrected post hoc tests showed the effect is strongest in the L ventromedial putamen  

(t[59] = 2.58). These patterns specifically stem from relational representation, and no region yields 
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a significant effect if the correlations are instead tested using a trial-wise measure of concept 

representation (all pcorrected > .05). Hence, relational representation in these areas specifically 

contributes to a more general semantic reasoning about the dynamic relationship between items. 

 

Figure 6. Prediction of task performance (normative fit) from relational representation. A. 

Trial-wise measures of representational strength were computed via second-order correlations 

between relational RSM and NSM rows. These were correlated within-subject with the normative 

fit of a participant’s response in each trial. B. The within-subject correlations were submitted to a 

one-sample t-test, identifying the ROIs where the group-average correlation was positive. 

Similarly to Figure 5D, the results here are presumed to be more subtle than typical RSA effects, 

so ROIs from the same region were pooled to form larger ROIs and increase statistical power. 

Shown results are false-discovery rate corrected (pcorrected < .05). 

3. Discussion 

 The present research leverages a contemporary LLM to map how semantic information 

coding progresses from concept to relational representations and how this translates into 

participants’ relational judgments. Study 1 targets concept representation, first validating the 

efficacy of using LLMs’ internal states for modeling distinct aspects of conceptual information. 

Applying the LLM-based concept embeddings, RSA then shows how the ventral stream represents 

incoming objects as concepts. Study 2 next targets relational representation, first validating that 

the LLM embeddings robustly capture relational information. These embeddings were then 

leveraged for RSA. Frontoparietal regions emerged as representing relational information, 
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particularly the frontal lobe, which represents the semantic relations between concepts more than 

the isolated concepts themselves. Interestingly, BG structures also contributed to parsing semantic 

relations. Both frontal and BG operations additionally predicted participants’ responses on the 

relationship between the scene and object stimuli. Altogether, these results outline how the human 

brain reasons about multiple objects and provide evidence supporting an analytic approach that 

can be generalized to other studies and questions. 

Our behavioral analyses establish three methodological conclusions on the use of LLMs 

for modeling brain representation. First, semantic embeddings based on modern LLMs outperform 

those from simpler historic models like word2vec and BERT (Figures 1 & 3). High-quality 

modeling, in turn, enhances statistical power in all downstream analyses – evidenced further in the 

LLM-embeddings generating the stronger concept RSA results in the fMRI experiment than older 

models (Figure 2). Second, because the behavioral analyses all focused on the degree of 

correspondence with human reports of semantic information, the results indicate that modern 

LLMs effectively capture how humans themselves specifically process semantics. LLM 

embeddings can therefore be taken to be more interpretable than older methods, at least for the 

purposes of psychological and neuroscientific research. Third, whereas prior fMRI studies 

employing LLMs have focused on verbal experiments where participants read or listened to 

lengthy texts,26,28 we demonstrate how texts can be crafted to allow high-quality semantic 

modeling in virtually any study, even ones using pictures. Text crafting notably introduces 

researcher degrees of freedom, but our preliminary analyses show that minor changes to the texts 

minimally influence the results, so long as proper grammar is maintained (see Methods Section 

4.2.2). Altogether, these three points make a strong case for LLMs to be a valuable technique for 

the toolbox of any researcher interested in semantic representation.  
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Using LLMs to model semantic information, our work puts forth several fMRI findings. 

Applying concept-level embeddings (“An {object}”), we show how the ventral stream – i.e., the 

early visual cortex, lateral occipital, fusiform gyrus, inferior temporal gyrus, and parahippocampal 

gyrus – specializes in parsing actively presented objects (Figures 2B & 4B). Although the 

relevance of the ventral stream to object processing is well established,11–13 our work additionally 

shows how the ventral stream minimally engages in any form of semantic relational representation 

(Figure 5D). This is interesting, as memory research suggests that anterior portions of the ventral 

stream help encode associations and semantic networks.14,38,39 Perhaps reconciling these ideas is 

that our associative modeling focused on established relations available to an LLM – e.g., 

knowledge about the link between a tractor and a farm. In contrast, associative memory paradigms 

typically employ novel associative learning and may therefore involve mechanisms orthogonal to 

accessing established relations. More generally, anterior ventral regions may encode that two 

concepts are related but not how they are related. 

The IPL and medial parietal areas (retrosplenial cortex and precuneus) may operate as a 

bridge between concept and relational information coding. These dorsal regions robustly represent 

concept-level information about objects and scenes (Figures 2 & 4) while also engaging in 

relational processing (Figure 5B). The relational results are based on RSA using embeddings that 

describe information on the semantic interaction between the scene and object (e.g., “At the 

{scene}, an {object}”). Neither the IPL nor any medial parietal structure showed any clear 

preference for concept or relational representation (see null differences in Figure 5D). A dual 

coding role for the IPL is consistent with classical models of language, which suggest that the 

multi-modally connected IPL (or angular gyrus) is a key hub for thematic or combinatorial 

semantics.40 This role positions the IPL ideally to contribute to relational processing, which by its 

nature implies combining information from potentially disparate concepts. Likewise, the 
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retrosplenial cortex is thought to play an integrative role in encoding spatial information.41,42 As 

bridges, these parietal structures may convey conceptual information to areas that encode solely 

relations, such as the LPFC. 

Our RSA results on relational coding consistently show effects in the LPFC, IPL, and 

MTG (Figures 5B & 6B). This set of areas is consistent with the canonical frontoparietal control 

network.32–34 However, there is heterogeneity within this set. Whereas the IPL represents both 

concepts and relations, the frontal lobes process information principally at a relational level and 

minimally represent concepts. This is consistent with the abundance of work illustrating the PFC’s 

role in executive tasks,40 and research identifying representation in the PFC only when dealing 

with concepts’ abstract properties (e.g., the PFC represents items’ category memberships or their 

affordances43,44). Our work generalizes this idea across semantic relational processing broadly and 

shows what computations occur elsewhere in the brain to possibly support these PFC operations. 

We additionally found that relational informational operations in the LPFC bear on 

participants’ behavior in the task. Specifically, stronger representations of the scene-object 

relation, particularly in areas of the PFC, predict more normative decisions about the scene and 

object (Figure 6); normativity effectively serves as a measure of task accuracy. The PFC is 

generally associated with semantic control functions in neuropsychological research,45 functional 

neuroimaging studies of healthy volunteers,46 and neuromodulation research.47 The current design 

did not explicitly manipulate executive control or semantic decision difficulty, so it is difficult to 

unpack how relational processing interacts with the mechanisms monitoring this processing. 

Nonetheless, our more basic conclusion remains robust: participants’ judgments are linked to 

relational rather than concept-level informational codes in the PFC. 

Notably, alongside frontoparietal effects, relational-coding RSA revealed that multiple BG 

structures represent relational information (Figures 5E & 5F) and relational representation in the 
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BG predicts normative task responses. The consistent emergence of the basal ganglia across these 

two separate relational analyses may be surprising. Research on object representation generally 

focuses instead on cortical areas, a tendency supported by the neuropsychological literature.48,49 

Potentially, the incorporation of BG structures in relational processing emerges from frontal-basal-

thalamic loops.20–22 The PFC projects information to the BG, putting forth different candidate 

thoughts and actions, which the BG selects among through competition mechanisms.50,51 In turn, 

projections back to the PFC update working memory via gating mechanisms – e.g., a participant 

may hold a representation of a poker table concept and a prison concept in their PFC, then reason 

about how gambling can be dangerous in a prison environment via frontal-basal-thalamic loops 

modifying active working memory states.52 Such mechanisms may produce the decodable fMRI 

patterns generating the relational representation effects seen here. 

In sum, shifting from univariate to multivariate informational analyses transformed how 

cognitive neuroscience studies concepts. By leveraging LLMs, the present research presents an 

analogous information-level approach to modeling relational coding. Together with the high-

quality semantic modeling afforded by LLMs broadly increasing statistical power, it becomes 

possible to map the progression of information processing between single-item and multi-item 

relational stages. We apply this strategy for fMRI analysis and show how most regions of the brain 

represent information in some way, and how this coalesces to influence human behavior and 

inferences about items’ links. This focus uncovered effects in areas not traditionally thought to 

encode stimulus information – namely, basal ganglia structures – but whose roles in information 

processing emerge when examining information at the relational level. We hope that the findings 

and general methodological principles put forth will encourage future work pursuing a more 

multifaceted understanding of information processing. 
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4. Methods 

4.1. Study 1A concept data and analysis 

4.1.1. Concept data 

 The investigation of concept-level semantics relied on data previously collected by our 

group, where 566 participants were each shown pictures of 40 items/concepts (e.g., birds, 

buildings, tools). The items varied between participants, such that 995 concepts were shown in 

total. For each concept, each participant was asked to come up with five features describing it 

(e.g., shown a cat, a participant may respond “is alive”). This dataset is publicly available 

(https://mariamh.shinyapps.io/dinolabobjects/), and its collection procedures along with name 

agreement data are described in full by Hovhannisyan et al.31. Each presented picture has a word 

label, which the present analyses using language models would leverage. For consistency, plural 

countable words were converted into singular forms; except for one case where the dataset 

included both a plural “scales” (referring to an animal’s skin) and “scale” (referring to a weight-

measuring tool). 

4.1.2. Concept analysis 

Our analyses focused on the fifty features most associated with the image concepts in a 

previously collected dataset of concept features (Hovhannisyan et al., 2021). As our analyses 

involved binary classification, we defined each object as having (1) a given feature if at least three 

people described the object as such (otherwise 0). The present analysis involved predicting 

whether each object concept has or does not have a given semantic feature using a linear SVM (C 

= 1 default) based on embeddings generated with Llama 3.2-3B (see embedding procedure below). 

For each feature’s classification, the data was balanced via random pruning, such that the numbers 

of examples with (1) or without (0) a given feature; no feature was associated with a majority of 

concepts, so pruning entailed omitting examples without a given feature. Balancing was expected 

https://mariamh.shinyapps.io/dinolabobjects/
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to make the accuracy estimates more intuitive and allow clearer comparisons between features. 

Stratified 2-fold cross-validation was performed, and accuracy was averaged across 10 repetitions 

with different random pruning. 

The LLM analyses involved submitting a short text for each concept into Llama 3.2-3B 

and extracting the residual stream activity. The short text was defined as “A/An {object}” or “Some 

{objects}” for uncountable singular words or for the one plural word in the dataset. LLMs are 

designed to process structured text, and incorporating a determiner (“a/an/some”) consistently 

increases performance. Specifically, adding this small grammatical construct increased 

classification accuracy for 45 out of the 50 properties tested using Llama 3.2-3B compared to 

using the capitalized word alone (“{Object}”); mean accuracy is 79.5% (with determiner) versus 

77.4% accuracy (without determiner). This improvement constitutes roughly half of the LLM’s 

advantage relative to the word2vec accuracy of 75.6%.  

After submitting the short texts to Llama 3.2-3B, the model’s residual stream activity was 

extracted for either singular layers or while concatenating the values across layers [4, 16), given 0-

indexed counting. These residual stream activations constituted a concept embedding with 36,864 

dimensions. For Experiment 1, the concept embedding was reduced to 300 dimensions using 

principal component analysis to ensure a fair comparison with word2vec, which uses 300 

dimensions; without dimensionality reduction, the average feature accuracy for the layer 4-16 

analysis is slightly higher (80.3%) compared to with reduction (79.5%). Analysis of each 

alternative transformer model (BERT, Llama 3.3-70b-Instruct, etc.) followed the same procedures. 

For BERT, the analyses used the final two layers’ activations for the embeddings, as this was 

found to maximize performance. For the other LLMs, which contained more layers than Llama 

3.2-3B (e.g., Llama 3.3-70b contains 80 layers whereas Llama 3.2-3B has 28 layers), embeddings 
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were defined based on layer depths proportional to those of Llama 3.2-3B (e.g., rather than layer 

4, layer 11 was used for an 80-layer model). 

For the word2vec comparison, we used pre-trained Word2Vec embeddings trained on 

Google News (300 dimensions) 7. Some object words were not available in the embeddings 

database, and these were manually changed (e.g., “aeroplane” was changed to “airplane” and 

“candycane” to just “candy”). Additionally, 27% of concepts’ labels spanned multiple words (e.g., 

“alarm clock”), and for these, the word2vec embeddings were computed separately for each word 

and then averaged. Note, the results do not meaningfully change if the analysis exclusively 

examines single-word concepts (mean Llama 3.2-3B accuracy = 78.9%, mean word2vec accuracy 

= 75.6%). 

4.2. Four-stage experiment used for Studies 1B, 2A, and 2B 

Study 1B (fMRI), Study 2A (behavioral), and Study 2B (fMRI) all use data collected from 

one four-stage experiment. For this experiment, 76 fluent English-speaking participants were 

recruited from the local community and screened for no history of neurological damage or mild 

cognitive impairment. Sixteen participants did not complete at least one of the four stages (e.g., 

withdrew after Stage 1), and these participants were not analyzed here. The final set of 60 

participants included a younger adult subset (N = 35, Mage = 22.8 [SD = 3.3], 64% female, 36% 

male) and older adult subset (N = 31, Mage = 71.5 [SD = 4.5], 64% female, 36% male), although 

none of the present analyses focus on age-related differences. The research was approved by the 

Duke University Institutional Review Board. 

This experiment consisted of four stages. Stages 1, 3, and 4 involve the presentation of 

object pictures or words in isolation, and these stages fMRI data were used for the Study 1B 

analysis. Stage 2 involved the presentation of a scene picture and then an object picture. 

Participants’ behavioral responses, rating how likely it would be to find the presented object in the 
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previously presented scene, were used for Study 2A. The fMRI data collected during this stage 

were used for Study 2B. These four stages are each detailed below. 

In Stage 1, participants completed trials where they were shown an object (e.g., a tractor) 

with a label (e.g., “tractor”), and participants used a 4-point scale to rate how accurately the label 

described the object (1 = “does not describe the object”; 4 = “exact description”). The task was 

designed to elicit high ratings (mean rating = 3.60). One week later, participants completed the 

Stage 2 encoding task (see above) and were asked to return approximately 24hrs (range: 20-28 

hours) to complete the Stage 3 and 4, conceptual and perceptual retrieval task, respectively.  

For Stage 2, participants were shown a picture of a familiar scene (e.g., a farm) followed 

by a picture of an object (e.g., a tractor). Participants used a 4-point scale to report how likely it 

would be to find the object in the scene (1 = “Very unlikely”, 4 = “Very likely”). Each participant 

completed 114 trials. One-third of trials showed scene-object pairs designed to be incongruent 

(mean rating = 1.28), one-third showed pairs that were neither congruent nor incongruent (mean 

rating = 2.11), and one-third showed pairs designed to be congruent (mean rating = 3.67). The 

scene-object pairs were counterbalanced across participants, so each scene and object appeared in 

all three conditions, and there were 342 possible scene-object pairs in total. 

In the Stage 3 conceptual retrieval task, participants were presented 144 words; 114 were 

the object labels corresponding to objects shown in the Stage 2 encoding task, and 30 were object 

labels representing new concepts. For each word, participants indicated whether they had 

previously seen the object concept during encoding using a 4-point scale (1 = “definitely new”, 2 = 

“probably new”, 3 = “probably old”, 4 = “definitely old”). Participants successfully recognized 

most objects, and the mean hit rate (3 or 4 response to old images) was 76%. The fMRI analyses 

would focus only on the 114 old trials, irrespective of participants’ responses.  
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In the Stage 4 visual retrieval task, participants were shown 126 images of objects. Among 

these, 96 images were of the exact objects shown in the Stage 2 encoding task, 18 images were 

perceptually similar lures of the original objects (e.g., a blue tractor Stage 2 depicted a red one), 

and 12 images represented new concepts not seen at the Stage 2 encoding task. Participants 

responded (i) “old”, (ii) “similar”, or (iii) “new” to each image, and successfully responded to 

most images, with a mean old hit rate of 64% and a mean similar hit rate of 49%. The fMRI 

analyses would focus on the 114 old or similar trials, again irrespective of participants’ responses. 

Preliminary tests showed that the inclusion of miss trials for the conceptual and visual RSA tasks 

did not influence the patterns of significance in the results. 

4.3. fMRI collection and preprocessing 

4.3.1. MRI acquisition 

During each of the four stages, MRI data were collected using a General Electric 3T 

MR750 scanner and an 8-channel head coil. Anatomical images were acquired using a T1-

weighted echo-planar sequence (96 slices at 0.9×0.9×1.9 mm3). Functional images were acquired 

using an echo-planar imaging sequence (repetition time = 2000 ms, echo time = 30 ms, field of 

view = 19.2 cm, 36 oblique slices with voxel dimensions of 3×3×3 mm). Stimuli were projected 

onto a mirror at the back of the scanner bore, and responses were recorded using a four-button 

fiber-optic response box (Current Designs, Philadelphia, PA, USA). Functional resting-state 

images were collected from the participants using the same parameters (210 volumes, 7 minutes). 

The BOLD timeseries were resampled into standard space with a spatial resolution of 2×2×2 mm3 

or 97×115×97 voxels. 

The below descriptions of anatomical and functional preprocessing were automatically 

generated by fMRIPrep with the express intention that users should copy and paste this text into 

their manuscripts unchanged. 
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4.3.2. Anatomical data preprocessing  

A total of two T1-weighted (T1w) images were found within the input BIDS dataset. All of 

them were corrected for intensity non-uniformity (INU) with N4BiasFieldCorrection 53 distributed 

with ANTs 2.3.3.54 The T1w-reference was then skull-stripped with a Nipype implementation of 

the antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as a target template. 

Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM), and gray-matter 

(GM) was performed on the brain-extracted T1w using fast (FSL 6.0.5.1).55 An anatomical T1w-

reference map was computed after registration of two T1w images (after INU-correction) using 

mri_robust_template (FreeSurfer 7.3.2).56 

Brain surfaces were reconstructed using recon-all (FreeSurfer 7.3.2),57 and the brain mask 

estimated previously was refined with a custom variation of the method to reconcile ANTs-derived 

and FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle.58 Volume-based 

spatial normalization to one standard space (MNI152NLin2009cAsym) was performed through 

nonlinear registration with antsRegistration (ANTs 2.3.3), using brain-extracted versions of both 

T1w reference and the T1w template. The following template was selected for spatial 

normalization and accessed with TemplateFlow (23.0.0):59 ICBM 152 Nonlinear Asymmetrical 

template version 2009c.60 

4.3.3. Functional data preprocessing 

For each of the seven BOLD runs found per participant (across all tasks and sessions), the 

following preprocessing was performed. First, a reference volume and its skull-stripped version 

were generated using a custom methodology of fMRIPrep. Head-motion parameters with respect 

to the BOLD reference (transformation matrices, and six corresponding rotation and translation 

parameters) are estimated before any spatiotemporal filtering using MCFLIRT (FSL 6.0.5.1, 
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Jenkinson et al. 2002). BOLD runs were slice-time corrected to 0.972s (0.5 of slice acquisition 

range 0.00s-1.94s) using 3dTshift from AFNI.61 

The BOLD time series (including slice-timing correction when applied) were resampled 

onto their original, native space by applying the transforms to correct for head motion. These 

resampled BOLD time-series will be referred to as preprocessed BOLD in original space, or just 

preprocessed BOLD. The BOLD reference was then co-registered to the T1w reference using 

bbregister (FreeSurfer) which implements boundary-based registration.62 Co-registration was 

configured with six degrees of freedom.  

Several confounding time series were calculated based on the preprocessed BOLD: 

framewise displacement (FD), DVARS, and three region-wise global signals. FD was computed 

using two formulations following Power et al. (absolute sum of relative motions)63 and Jenkinson 

(relative root mean squared displacement between affines).64 FD and DVARS are calculated for 

each functional run, both using their implementations in Nipype (following the definitions by 

Power et al.63). The three global signals are extracted within the CSF, the WM, and the whole-

brain masks. Principal components are estimated after high-pass filtering the preprocessed BOLD 

time series (using a discrete cosine filter with 128s cut-off) for the two CompCor variants: 

temporal (tCompCor) and anatomical (aCompCor). tCompCor components are then calculated 

from the top 2% variable voxels within the brain mask. For aCompCor, three probabilistic masks 

(CSF, WM, and combined CSF+WM) are generated in anatomical space. The implementation 

differs from that of Behzadi et al. in that instead of eroding the masks by two pixels on BOLD 

space, a mask of pixels that likely contain a volume fraction of GM is subtracted from the 

aCompCor masks. This mask is obtained by dilating a GM mask extracted from the FreeSurfer’s 

aseg segmentation, and it ensures components are not extracted from voxels containing a minimal 

fraction of GM. Finally, these masks are resampled into BOLD space and binarized by 
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thresholding at 0.99 (as in the original implementation). Components are also calculated separately 

within the WM and CSF masks. For each CompCor decomposition, the k components with the 

largest singular values are retained, such that the retained components’ time series are sufficient to 

explain 50% of variance across the nuisance mask (CSF, WM, combined, or temporal). The 

remaining components are dropped from consideration.  

The head-motion estimates calculated in the correction step were also placed within the 

corresponding confounds file. The confound time series derived from head motion estimates and 

global signals were expanded with the inclusion of temporal derivatives and quadratic terms for 

each.65 Additional nuisance time series are calculated by means of principal components analysis 

of the signal found within a thin band (crown) of voxels around the edge of the brain, as proposed 

by Patriat, Reynolds, and Birn.66 The BOLD time series were resampled into standard space, 

generating a preprocessed BOLD run in MNI152NLin2009cAsym space. First, a reference volume 

and its skull-stripped version were generated using a custom methodology of fMRIPrep. All 

resampling can be performed with a single interpolation step by composing all the pertinent 

transformations (i.e., head-motion transform matrices, susceptibility distortion correction when 

available, and co-registrations to anatomical and output spaces). Gridded (volumetric) resampling 

was performed using antsApplyTransforms (ANTs), configured with Lanczos interpolation to 

minimize the smoothing effects of other kernels.67 Non-gridded (surface) resampling was 

performed using mri_vol2surf (FreeSurfer). Many internal operations of fMRIPrep use NiLearn 

0.9.1,68 mostly within the functional processing workflow. For more details of the pipeline, see the 

section corresponding to workflows in fMRIPrep’s documentation. 

4.3.4. Single-trial activity modeling 

Analyses measured each voxel’s BOLD response in each trial. This was performed with 

first-level general linear models using the Least Squares Separate approach by Mumford et al.,69, 
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which involves fitting a separate regression for each trial. The regression included a boxcar signal 

spanning the object presentation period. The regressor’s resulting coefficient represents the trial’s 

BOLD response. The regression additionally included a boxcar signal covering the presentation 

time of all other stimuli (i.e., every other object and, for the Stage 2 analysis, every scene). The 

linear models also included six translation/rotation regressors, three other covariates for head 

motion (FD, DVARS, and RSMD), and covariates for mean global, white-matter, and 

cerebrospinal signals. For all four tasks of each of the 60 participants (240 scans), 114 three-

dimensional beta coefficient volumes were defined. The voxelwise betas were then organized into 

246 ROIs based on the Brainnetome Atlas. The ROIs cover all neocortical areas along with the 

hippocampus, amygdala, thalamus, and basal ganglia.  

4.4. Study 1B concept representational similarity analysis 

 Concept representation in the brain was examined using RSA. This involved generating 

embeddings by submitting short “An {object}” texts to Llama 3.2-3B and concatenating the 

residual stream responses across layers [4, 16). This parallels the Study 1A concept analysis. For 

each participant’s embeddings, each dimension was z-scored across their 114 different concept 

embeddings. This was not necessary for the Study 1A analyses, as a given dimension’s mean 

across embeddings will not influence the support vector machines or regressions. However, for 

RSA in Study 1B, which involves correlations between trials’ embeddings, this will have an 

impact, and preliminary analyses demonstrated that this normalization bolsters RSA effects (for 

any model tested, e.g., Llama 3.2-3B RSA or the word2vec RSA). 

For each participant and each of the three isolated-item task stages, an RSM was prepared 

by taking correlations between trials’ concept embeddings. A corresponding NSM was produced 

for each ROI via across-trial correlations between ROIs’ voxelwise activations. The first-level 

analysis of each participant’s data in each stage involved a second-order Spearman correlation 
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between the associated RSM and each ROI’s NSM. For each participant, their second-order 

correlations were averaged across the three stages. Then, second-level analysis submitted each 

participant’s mean correlation to a one-sample t-test, evaluating whether the group-wide RSA 

effect significantly surpasses zero. For the analysis of the second-stage fMRI data, an analogous 

procedure was performed for scene concept-level RSA (“A {scene}” embeddings) along with 

scene-and-object RSA (averaging trials’ “An {object}” and “A {scene}” embeddings). 

For Figure 2C, RSA was also performed for embeddings based on the residual streams of 

singular layers. Here, RSA was conducted for four large-scale areas, defined by the regional labels 

of the Brainnetome Atlas: the Occipital cortex (averaging the NSMs across medioventral and 

lateral occipital ROIs), the inferior temporal lobe (inferior temporal, fusiform, and 

parahippocampal ROIs), the parietal lobe (precuneus, inferior parietal lobule, superior parietal 

lobule ROIs), and the prefrontal cortex (orbitofrontal, inferior frontal, middle frontal, and superior 

frontal ROIs). 

4.5. Study 2A relational behavioral analysis 

 The Study 2A analyses predicted the mean rating assigned to the 342 scene-object pairs 

using a ridge regression (α = 1 default), leave-one-out cross-validation, and clipping predictions to 

be between 1 and 4. To produce the LLM embeddings, two short texts corresponding to each pair 

were submitted to Llama 3.2-3B, and the residual stream activity was extracted for layers [4, 16) 

and concatenated to form an embedding with 36,864 dimensions. The two short texts consisted of 

“At the {scene}, an {object}” and “An {object} at {the scene}” with changes to the object 

determiner (“a/an/some”) or the scene proposition (“at/in/on”) as appropriate. 

The determiners and propositions were prepared manually. Each object had a consistent 

determiner across all three of its scene-object pairs, and the same is true for each scene’s 

proposition. For the scene proposition, “at” was used as the default (96/114 scenes) and only 
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changed for scenes where “at” seemed unnatural (e.g., “On the balcony” rather than “At the 

balcony”). Rather than just one text, two texts were used to capture both a scene → object (“On 

the balcony, a violin”) order and an object → scene order (“A violin on the balcony”). We 

presumed that this averaging would minimize potentially arbitrary order effects. The extracted 

residual stream values were averaged across the two texts to produce the relational embedding. 

Testing just texts’ embeddings individually shows that the “At the {scene}, an {object}” 

embeddings yield higher accuracy (R2 = .70) than the “An {object} at {the scene}” embeddings (R2 

= .53); the averaged embedding accuracy is R2 = .67; see classification procedure below. 

Nonetheless, the average embedding across both scene/object orders was used as we expected this 

would increase the generalizability of the results. As with the concept classification, the text 

structure employed improves embedding quality. By comparison, averaging “An {object} and 

{scene}” and “A {scene} and {object}” produces R2 = .65, which is slightly lower. However, 

deviating from grammar entirely with “{Object} {scene}” and “{Scene} {object}” yields just R2 = 

.55, which is a starker decrease. For future research employing this methodology, these results 

suggest that, at minimum, the short texts should be grammatically proper. 

 For the word2vec comparisons, we measured the Pearson correlation between the object 

and scene word2vec embeddings. This technique has been used in prior work seeking an objective 

measure of two words’ relatedness.70 This scalar was then used as the sole predictor in a ridge 

regression with [1, 4] clipping and leave-one-out cross-validation, as in the LLM analysis. The 

regression predicted scene-object likelihood. This notably yields similar results (R2 = .365) as a 

Pearson correlation between similarity and scene-object likelihood (R2 = .368; Spearman ρ2 = 

.340). We explored predictions based on the difference between the scene and object word2vec 

embeddings, producing a 300-dimension difference vector. However, this difference vector did not 

yield above-chance predictions (R2 < 0), nor did an absolute difference vector (R2 < 0). 



34 

 

 We additionally report brief analyses using a toy dataset involving 20 animals (10 

herbivores and 10 carnivores) and 20 foods (10 plants and 10 meats) used to prepare texts “An 

{animal} and a {food}” and labeled based on whether the animal would eat the food. Classification 

using similar procedures as above yielded accuracy well above chance (~70%) with group-2-fold 

cross-validation, training on herbivore texts and testing on carnivore texts or vice versa. These 

results are, however, just meant as an illustration to provide intuition, and prior studies provide 

more formal decompositions of LLMs’ residual streams into features25 

4.6. Study 2B relation-level representational similarity analysis 

4.6.1. Measuring relational representation 

 Relational representation was similarly assessed using RSA, now using relational 

embeddings. These embeddings were generated by averaging the residual stream layer [4, 16) 

responses across the texts “At the {scene}, an {object}” and “An {object} at the {scene}”, which 

parallels the Study 2A relational analysis. Across the study, each object was associated with three 

pairs of text – e.g., for an apple, there is “At the orchard, an apple”, “At the gym, an apple”, “At 

the iceberg, an apple”. To remove concept-level information about the apple from each of these 

embeddings, the three {scene}-apple embeddings were averaged, and this average was subtracted 

from the other three embeddings. For example, by subtracting this mean from the “At the orchard, 

an apple” embedding, the resulting object-normalized embedding now just expresses the orchard-

apple relation and the orchard concept. To remove the orchard concept information, the object-

normalized embedding mean was computed for “At the orchard, an apple”, “At the orchard, a 

Ferris wheel”, and “At the orchard, a police car”. This mean was then subtracted from the object-

normalized embedding of “At the orchard, an apple” producing an embedding that has omitted 

both object and scene concept-level information.  
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Using this relational embedding, RSA was performed. First, to confirm that this embedding 

omitted effectively all concept-level information, RSA was attempted while applying these 

relational embeddings to analyze the fMRI data of the isolated-item task stage – i.e., stages where 

no scenes were shown and thus RSA should yield null results. Afterward, analyses turned to the 

second stage’s fMRI data. Here, group-wide trends were evaluated using both one-sample t-tests 

relative to zero and paired t-test comparing the relational RSA effect to the object-and-scene 

concept RSA effect. 

4.6.2. Predicting normative fit 

For the final analyses predicting the normative fit of participants’ responses in the scene-

object task, single-trial measures of representational strength were computed using the procedures 

by Davis et al.12. Specifically, a row-by-row correlation was computed between each row of the 

(114 × 114) relational-embedding RSM and the (114 × 114) NSM, producing 114 values 

describing representational strength in each trial. For each participant, their representational 

strength values were correlated with their normative fit scores – that is, the absolute difference 

between the response and 4, 2.5, or 1, depending on whether a given trial was in the incongruent, 

neutral, or congruent condition (see task design above). For the group-level analysis, the Pearson 

correlations were submitted to a one-sample t-test; note that this is largely equivalent to a 

multilevel regression of “accuracy ~ 1 + representation + (1 + representation | participant)”.  

Data availability. The data collected will be shared upon request via email to the 

corresponding author, Paul C. Bogdan, or principal investigators Roberto Cabeza and Simon W. 

Davis. We have been explicitly told by our IRB that we do not have permission to upload the 

collected data to a public repository. 
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