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Abstract 

Neuroscience is replete with evidence that cognitive representations are distributed across 

many cortical regions. Yet, the scale and content of such distributed processing is unclear. Do 

findings of widespread information coding suggest a large-scale “forest” of regions interacting to 

represent information or instead imply a multitude of small-scale “trees,” processing information as 

localized modules. To investigate this distinction, we used visual and semantic representational 

analysis of fMRI data from 60 participants viewing everyday objects in multiple task contexts, and 

we examined the relationships between regions in terms of information coding. We demonstrate that 

coding of visual content in the occipital lobe is overwhelmingly modular, such that different 

occipital structures show limited coordination and tend to encode information redundantly. By 

contrast, the coding of semantic content in the inferior temporal lobe involves a high degree of 

coordination between regions, which optimize their coding to collectively represent a large semantic 

space with minimal redundancy between regions. No other brain area – neither the parietal nor 

prefrontal cortices – shows the preference for large-scale coding seen in the inferior temporal lobe. 

Taken together, these results outline a framework of how the ventral stream transitions from small-

scale to large-scale coding as information progresses from visual to semantic representations. 

Keywords: Representation, semantics, fMRI, population coding, information theory 
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1. Introduction 

One of neuroscience’s oldest debates is whether the brain encodes information in a localized 

or distributed fashion. Early lesion studies were formative in localizing cognition to discrete brain 

regions (Alexander et al., 1990; Wernicke, 1970), but even in early work, distributed processing 

schemes were sown with hypotheses on neurological disorders deriving from the disconnection of 

neural regions (Catani & Ffytche, 2005; Geschwind, 1965; Mah et al., 2014). Task-fMRI brought 

new tools to explore these ideas, and techniques like representational similarity analysis (RSA) have 

been used to identify dissociations between the regions encoding different types of information 

(e.g., visual or semantic) (Binney et al., 2016; Clarke & Tyler, 2014; Khaligh-Razavi & 

Kriegeskorte, 2014; Tyler et al., 2013). Furthermore, RSA has demonstrated how stimuli of all sorts 

may prompt information coding across a wide range of brain regions (Haxby et al., 2014; Huang et 

al., 2024; Williams & Henson, 2018). However, it remains unclear whether such results on visual 

and semantic coding indicate a multitude of regions performing highly localized information 

processing or whether regions are interacting as part of some integrated system. 

The ‘content’ of cortical representations can be summarized by two domains that dominate 

the cognitive neuroscience of object processing: visual features and semantic features, which seem 

to be most strongly represented in different brain areas. The cognitive neuroscience of vision has 

demonstrated this using convolutional neural networks (CNNs) to model visual processing along 

the occipitotemporal pathway. Early hidden layers reliably predict brain activity patterns 

predominantly in early visual cortex, while late layers predict activity in more anterior ventral 

pathways regions (Khaligh-Razavi & Kriegeskorte, 2014; Wen et al., 2018). Similarly, researchers 

focused on semantic cognition have shown how multiple loci in the anterior temporal cortex 

(perirhinal cortex, anterior temporal lobe) are associated with processing of multimodal object 

properties (Binney et al., 2016; Clarke & Tyler, 2014; Tyler et al., 2013). These visual and semantic 
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findings together imply a gradient of differential types of information processing, whereby more 

abstract semantic information is progressively encoded more anteriorly, but the scale of this well-

known pattern are unclear. 

The ‘scale’ in neural information processing also is quantifiable at multiple levels. In terms 

of abstract computation, a brain system may be highly modular with its subsets representing 

information in parallel and with fairly minimal interaction (Figure 1A). In terms of population 

coding, neural representations may be scattered across distant neurons interacting to encode 

information (Figure 1B). Questions concerning the scale of regional coordination in the 

representation of information can be investigated by (i) examining the amount of information 

expressed by a collection of regions together or by each region separately, and (ii) measuring the 

redundancy in information expressed across regions (Luppi et al., 2024). Compared to an integrated 

brain system that represents information with large-scale population codes, a more modular system 

that represents information in small, specialized population codes has a lower capacity to encode 

information and will display greater redundancy between population codes. This link between 

specialization and redundancy may seem unintuitive, but it follows from the idea that a set of 

neurons can encode the maximum quantity of information if unconstrained and will avoid 

dedicating resources to duplicate coding (i.e., the Efficient Coding Hypothesis(Barlow, 1961)). As a 

more concrete example, V4 is known to encode color while V5 encodes motion. However, these 

structures will presumably also express some overlapping information, which would not be 

duplicated in a hypothetical V4-V5 combined structure. 

Scale in information coding can be empirically studied using fMRI and RSA, such that the 

correspondence between a theoretical representational similarity matrix (RSM) and a brain region’s 

neural similarity matrix (NSM) indicates that the information described in the RSM is represented 

by a brain area (Kriegeskorte et al., 2008, 2010). To study whether regions coordinate 
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synergistically to form a large-scale unit, the NSM can be defined while pooling voxels across 

regions (Figure 1C). If the resulting NSM better fits the theorized RSM better than expected from 

analyzing the regions individually, this suggests that the regions are coordinating their information 

processing (Figure 1C). Correlating just small-scale NSMs further allows measuring the extent 

pairs of regions encode similar information. Weak correlations would indicate minimal redundancy 

between regions, which can further point to regions operating as an integrated unit. 

In sum, the organizing principles behind how the factors of scale and content are 

differentially coordinated across the brain are unknown. One possibility is that information coding 

in many regions reflects the coordination of a specific type of information to form an integrated 

computational whole that produces a large-scale population code. Alternatively, widespread 

information coding may reflect the coordination of multitudes of self-contained modules that 

operate mostly independently, differing in the specific type of information they encode but with 

possibly high redundancy. A large integrated system may be more efficient, but the inherent 

complexity may create challenges. Our research treats this type of information processing ‘scale’ as 

a possible property of brain systems (e.g., the occipital lobe, inferior temporal lobe, etc.), and 

examines how the scale of processing may depend on whether regions are encoding visual or 

semantic content.  
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Figure 1. Illustration of the concepts targeted here. A. Different features can either be extracted 

separately or simultaneously, and regions can be conceptualized as encoding information as 

smaller modules or more integrated functional units. For example, Region 1 may code for motion, 

while Region 2 codes for color; alternatively, these regions may collectively encode both in an 

indivisible manner. B. Neuronally, features can be parsed separately via multiple small-scale 

population codes or simultaneously with larger-scale population codes. C. Representational 

similarity analysis (RSA) can be used to discern whether sets of regions encode information in a 

small- or large-scale manner. To model small-scale coding, neural similarity matrices (NSMs) can 

be extracted from trial-wise responses in regions separately (NSMsmall 1 & NSMsmall 2) or while 

pooling all voxels in a larger region (NSMlarge). We can test Information Processing by submitting 

these RSMs to RSA to evaluate the quantities of information encoded at each level. We can also test 

Redundancy by computing the correlations between small-scale NSMs; strong correlations between 

NSMs indicates redundant information coding. Supplemental Materials 1 provides simulations 

describing how small/large-scale information coding may elicit different fMRI effects on decoding 

visual and semantic information, and demonstrates how RSA may distinguish these scales.  

 

Our research adapts traditional RSA techniques to study how collections of regions encode 

visual and semantic information in small- or large-scale fashions. Preliminary simulations formalize 

the claims above on “small-scale” and “large-scale” coding and demonstrate how these conditions 

can be distinguished using RSA (Supplemental Materials 1). Subsequently, our study uses fMRI 

data (N = 60 subjects) from a memory paradigm where 114 real-world objects were repeatedly 

shown across four stages involving (i) passive naming, (ii) contextual encoding, (iii) visual 
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recognition, and (iv) conceptual recognition.1 The range of task demands across this dataset is 

explicitly incorporated to facilitate generalization of visual and semantic information across 

different task demands. Analyses were as follows: First, we examined the small versus large by 

investigating how pooling voxels from multiple regions may magnify RSA effects. This analysis is 

performed across different brain areas and for either perceptual or semantic information. Second, we 

measured correlations between regions to study redundancy in the information encoded in each 

region. Third, we assessed the relationship between these two phenomena, testing whether high 

collective information within a large-scale area is linked to redundancy among constituent regions. 

Taken together, these analyses aim to provide support for the overarching perspective that 

understanding the scale of information processing is the key to understanding how different forms 

of information are decoded in the brain. 

2. Materials and methods 

2.1. Participants 

For this four-stage study, participants were recruited from the local community and screened 

to ensure they were native or fluent English speakers and no history of brain injury or mild 

cognitive impairment. In total, 38 younger adults (aged 18-30) and 38 older adults (aged 65-85) 

participated in the study. Of these, 16 people did not complete at least one of the four scans – e.g., 

due to withdrawing from the study after the first stage. The final set of 60 participants who provided 

fMRI data for all four stages consisted of a younger adult subset (N = 32, Mage = 22.8 [SD = 3.3], 

66% female, 34% male) and an older adult subset (N = 28, Mage = 71.5 [SD = 4.5], 64% female, 

36% male). There were no exclusions. All participants provided written informed consent, and this 

research was approved by the Duke University Institutional Review Board.  

 
1 In principle, our analyses could be done with any dataset where participants viewed diverse stimuli, but we opted for 

this data already collected by our group, as our experiment included multiple stages, this increases our ability to 

generalize across processing demands. In addition, our dataset is large: roughly 120 hours of task-fMRI scanning. We 

expected that this large size would allow fine-grain comparisons between RSA effects with high statistical power. 



8 

2.2. Task design 

Participants completed four stages of a study design on object processing, semantics, and 

memory. In each stage, participants viewed stimuli for the same set of 114 objects, always separated 

across three runs. The stages consisted of: (1) an object naming task, (2) a task where participants 

judged the link between an object and a scene, (3) a conceptual recognition task for object memory, 

and (4) a visual recognition task for object memory. Our analyses pool data across the four stages to 

draw conclusions that generalize across processing demands. In addition, pooling data was expected 

to increase the statistical power of our analyses, allowing robust conclusions. Additionally, 

Supplemental Materials 2 shows the results of the small/large-scale RSA analysis using each task 

individually, showing patterns consistent with the main text conclusions. 

In Stage 1, participants completed trials where they were shown an object (e.g., a tractor) 

with a label (e.g., “tractor”), and participants used a 4-point scale to rate how accurately the label 

described the object (1 = “does not describe the object”; 4 = “exact description”). The task was 

designed to elicit high ratings (mean rating = 3.60). One week later, participants completed the 

Stage 2 encoding task (see above) and were asked to return approximately 24hrs (range: 20-28 

hours) to complete the Stage 3 and 4, conceptual and perceptual retrieval task, respectively.  

For Stage 2, participants were shown a picture of a familiar scene (e.g., a farm) followed by 

a picture of an object (e.g., a tractor). Participants used a 4-point scale to report how likely it would 

be to find the object in the scene (1 = “Very unlikely”, 4 = “Very likely”). Each participant completed 

114 trials. One-third of trials showed scene-object pairs designed to be incongruent (mean rating = 

1.28), one-third showed pairs that were neither congruent nor incongruent (mean rating = 2.11), and 

one-third showed pairs designed to be congruent (mean rating = 3.67). The scene-object pairs were 

counterbalanced across participants, so each scene and object appeared in all three conditions, and 

there were 342 possible scene-object pairs in total. 
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In the Stage 3 conceptual retrieval task, participants were presented 144 words; 114 were the 

object labels corresponding to objects shown in the Stage 2 encoding task, and 30 were object labels 

representing new concepts. For each word, participants indicated whether they had previously seen 

the object concept during encoding using a 4-point scale (1 = “definitely new”, 2 = “probably new”, 

3 = “probably old”, 4 = “definitely old”). Participants successfully recognized most objects, and the 

mean hit rate (3 or 4 response to old images) was 76%. The fMRI analyses would focus only on the 

114 old trials, irrespective of participants’ responses.  

In the Stage 4 visual retrieval task, participants were shown 126 images of objects. Among 

these, 96 images were of the exact objects shown in the Stage 2 encoding task, 18 images were 

perceptually similar lures of the original objects (e.g., a blue tractor Stage 2 depicted a red one), and 

12 images represented new concepts not seen at the Stage 2 encoding task. Participants responded 

(i) “old”, (ii) “similar”, or (iii) “new” to each image, and successfully responded to most images, 

with a mean old hit rate of 64% and a mean similar hit rate of 49%. The fMRI analyses would focus 

on the 114 old or similar trials, again irrespective of participants’ responses. Preliminary tests 

showed that the inclusion of miss trials for the conceptual and visual RSA tasks did not influence 

the patterns of significance in the results. 

2.3. MRI and preprocessing 

2.3.1. MRI acquisition 

MRI data were collected using a General Electric 3T MR750 scanner and an 8-channel head 

coil. Anatomical images were acquired using a T1-weighted echo-planar sequence (96 slices at 

0.9×0.9×1.9 mm3). Functional images were acquired using an echo-planar imaging sequence 

(repetition time = 2000 ms, echo time = 30 ms, field of view = 19.2 cm, 36 oblique slices with voxel 

dimensions of 3×3×3 mm). Stimuli were projected onto a mirror at the back of the scanner bore, 

and responses were recorded using a four-button fiber-optic response box (Current Designs, 
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Philadelphia, PA, USA). Functional resting-state images were collected from the participants using 

the same parameters (210 volumes, 7 minutes). The BOLD timeseries were resampled into standard 

space with a spatial resolution of 2×2×2 mm3 or 97×115×97 voxels. 

The below descriptions of anatomical and functional preprocessing were automatically 

generated by fMRIPrep with the express intention that users should copy and paste this text into 

their manuscripts unchanged. 

2.3.2. Anatomical data preprocessing  

A total of two T1-weighted (T1w) images were found within the input BIDS dataset. All of 

them were corrected for intensity non-uniformity (INU) with N4BiasFieldCorrection (Tunison et 

al., 2019) distributed with ANTs 2.3.3 (Avants et al., 2008). The T1w-reference was then skull-

stripped with a Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), using 

OASIS30ANTs as a target template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-

matter (WM), and gray-matter (GM) was performed on the brain-extracted T1w using fast (FSL 

6.0.5.1) (Zhang et al., 2001). An anatomical T1w-reference map was computed after registration of 

two T1w images (after INU-correction) using mri_robust_template (FreeSurfer 7.3.2) (Reuter et al., 

2010). 

Brain surfaces were reconstructed using recon-all (FreeSurfer 7.3.2) (Dale et al., 1999), and 

the brain mask estimated previously was refined with a custom variation of the method to reconcile 

ANTs-derived and FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle 

(Klein et al., 2017). Volume-based spatial normalization to one standard space 

(MNI152NLin2009cAsym) was performed through nonlinear registration with antsRegistration 

(ANTs 2.3.3), using brain-extracted versions of both T1w reference and the T1w template. The 

following template was selected for spatial normalization and accessed with TemplateFlow 
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(23.0.0):(Ciric et al., 2022) ICBM 152 Nonlinear Asymmetrical template version 2009c (Fonov et 

al., 2009). 

2.3.3. Functional data preprocessing 

For each of the seven BOLD runs found per participant (across all tasks and sessions), the 

following preprocessing was performed. First, a reference volume and its skull-stripped version 

were generated using a custom methodology of fMRIPrep. Head-motion parameters with respect to 

the BOLD reference (transformation matrices, and six corresponding rotation and translation 

parameters) are estimated before any spatiotemporal filtering using MCFLIRT (FSL 6.0.5.1, 

Jenkinson et al. 2002). BOLD runs were slice-time corrected to 0.972s (0.5 of slice acquisition 

range 0.00s-1.94s) using 3dTshift from AFNI (Cox & Hyde, 1997). 

The BOLD time series (including slice-timing correction when applied) were resampled 

onto their original, native space by applying the transforms to correct for head motion. These 

resampled BOLD time-series will be referred to as preprocessed BOLD in original space, or just 

preprocessed BOLD. The BOLD reference was then co-registered to the T1w reference using 

bbregister (FreeSurfer) which implements boundary-based registration (Greve & Fischl, 2009). Co-

registration was configured with six degrees of freedom.  

Several confounding time series were calculated based on the preprocessed BOLD: 

framewise displacement (FD), DVARS, and three region-wise global signals. FD was computed 

using two formulations following Power et al. (absolute sum of relative motions) (Power et al., 

2014) and Jenkinson (relative root mean squared displacement between affines) (Jenkinson et al., 

2002). FD and DVARS are calculated for each functional run, both using their implementations in 

Nipype (following the definitions by Power et al. (2014)). The three global signals are extracted 

within the CSF, the WM, and the whole-brain masks. Principal components are estimated after high-

pass filtering the preprocessed BOLD time series (using a discrete cosine filter with 128s cut-off) 



12 

for the two CompCor variants: temporal (tCompCor) and anatomical (aCompCor). tCompCor 

components are then calculated from the top 2% variable voxels within the brain mask. For 

aCompCor, three probabilistic masks (CSF, WM, and combined CSF+WM) are generated in 

anatomical space. The implementation differs from that of Behzadi et al. in that instead of eroding 

the masks by two pixels on BOLD space, a mask of pixels that likely contain a volume fraction of 

GM is subtracted from the aCompCor masks. This mask is obtained by dilating a GM mask 

extracted from the FreeSurfer’s aseg segmentation, and it ensures components are not extracted 

from voxels containing a minimal fraction of GM. Finally, these masks are resampled into BOLD 

space and binarized by thresholding at 0.99 (as in the original implementation). Components are 

also calculated separately within the WM and CSF masks. For each CompCor decomposition, the k 

components with the largest singular values are retained, such that the retained components’ time 

series are sufficient to explain 50% of variance across the nuisance mask (CSF, WM, combined, or 

temporal). The remaining components are dropped from consideration.  

The head-motion estimates calculated in the correction step were also placed within the 

corresponding confounds file. The confound time series derived from head motion estimates and 

global signals were expanded with the inclusion of temporal derivatives and quadratic terms for 

each (Satterthwaite et al., 2013). Additional nuisance time series are calculated by means of 

principal components analysis of the signal found within a thin band (crown) of voxels around the 

edge of the brain, as proposed by Patriat, Reynolds, and Birn (2017). The BOLD time series were 

resampled into standard space, generating a preprocessed BOLD run in MNI152NLin2009cAsym 

space. First, a reference volume and its skull-stripped version were generated using a custom 

methodology of fMRIPrep. All resampling can be performed with a single interpolation step by 

composing all the pertinent transformations (i.e., head-motion transform matrices, susceptibility 

distortion correction when available, and co-registrations to anatomical and output spaces). Gridded 
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(volumetric) resampling was performed using antsApplyTransforms (ANTs), configured with 

Lanczos interpolation to minimize the smoothing effects of other kernels (Lanczos, 1964). Non-

gridded (surface) resampling was performed using mri_vol2surf (FreeSurfer). Many internal 

operations of fMRIPrep use Nilearn 0.9.1 (Abraham et al., 2014), mostly within the functional 

processing workflow. For more details of the pipeline, see the section corresponding to workflows 

in fMRIPrep’s documentation. 

2.3.4. Single-trial activity modeling 

Analyses required measuring each voxel’s BOLD response in each trial. This was done 

using first-level general linear models with the Least Squares Separate approach by Mumford et al. 

(Mumford et al., 2012). which involves fitting a separate regression for each trial. The regression 

included a boxcar signal spanning the trial’s object presentation period, and this regressor’s 

coefficient represents the trial’s BOLD response. The regression also included a boxcar signal 

covering the presentation time of all other stimuli (i.e., every other object and every scene). 

Additionally, the linear models included six translation/rotation regressors, three other covariates for 

head motion (FD, DVARS, and RSMD), and covariates for mean global, white-matter, and 

cerebrospinal signals. Hence, for all four tasks of each of the 60 participants (240 scans), 114 three-

dimensional beta coefficient volumes were defined. These were submitted to RSA. 

2.4. Brain area divisions 

The analyses also involved organizing a subset of the ROIs into four large anatomical areas 

based on Brainnetome labels: the occipital lobe (22 ROIs; cuneus & occipital gyrus; 139 cm3, 

including white matter), the inferior temporal lobe (32 ROIs; fusiform, parahippocampal, inferior 

temporal gyri, & anterior temporal lobe [the anterior temporal lobe is not an official Brainnetome 

label, but is a custom one used by our group]; 138 cm3), the parietal lobe (30 ROIs; precuneus, 
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inferior parietal lobule, & super parietal lobule; 192 cm3), and the prefrontal cortex (52 ROIs; 

orbital, inferior, middle, & superior frontal gyri; 288 cm3). 

2.5. Representational similarity analysis 

2.5.1. Generating the model-based representational similarity matrices 

 RSA was conducted with respect to both visual and semantic features by defining a model 

RSM for each of these two types of information. The creation of each model RSM involved 

defining a visual or semantic feature vector for each of 114 total objects. To produce the visual 

vector for a given trial, every object image was submitted to the VGG16 convolutional neural 

network (Simonyan, 2014). For each object, all the activation values from neurons of the first 

VGG16 layer were extracted. For each object, its activation values (224x224x64 values) were 

flattened into a single vector (length = 3,211,264). These object vectors were reduced to smaller 

vectors of 114 values using PCA. Then, the visual RSM was generated via across-trial correlations 

of these vectors. For the semantic RSM, each trial’s vector was generated by submitting its object’s 

label to a pre-trained word2vec model;(Mikolov et al., 2013) the public “word2vec-google-news-

300” version from the Gensim Python package. The word2vec model yielded a 300-length vector 

for each of the same 114 objects, which was correlated between trials to generate the semantic 

RSM. 

2.5.2. Computing neural similarity matrices 

All of the RSA performed in the report was ROI-based. Analyses parcellated the brain into 

210 neocortical ROIs using the Brainnetome Atlas (Fan et al., 2016). The analyses also involved 

organizing a subset of the ROIs into occipital lobe, inferior temporal lobe, parietal lobe, and 

prefrontal cortex areas; see Methods for information on each area’s constituent region names. The 

regional or area-wide voxel-wise data was used to generate NSMs via across-trial correlations. 

Second-order RSM × NSM Spearman correlations were computed for the different model RSMs 
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and NSMs, done separately for each participant and each of the task stages. The correlation 

coefficients were then averaged by participant across task stages and then submitted to group-level 

analyses (paired t-tests or repeated-measures ANOVAs).  

2.6. Redundancy analysis correlations 

We pursued a series of analyses based on ROI-to-ROI relationships to examine patterns 

linked to when multiple ROIs encode overlapping/redundant information. We also sought to 

evaluate how this perspective compares to traditional functional connectivity analyses to confirm 

this approach adds new information above and beyond traditional means of assessing region-to-

region interactions. First, analyses examined the similarity in small-scale NSMs, correlating these 

between ROIs – also referred to as model-free representational connectivity (Huang et al., 2024). 

The ROI-ROI correlations were calculated for each of the four stages and averaged. Second, 

analyses examined item specializing by calculating item-wise neural pattern similarity for each trial 

(also called the exemplar discriminability index)(Nili et al., 2020); computing the neural pattern 

similarity of an ROI for a given object involved measuring the similarity of the voxel-wise response 

across two stages, then subtracting the average level of similarity (average correlation between the 

response to the object in one stage and the response to every other object in another stage). 

Computing neural pattern similarity for each object yielded a 114-length vector per ROI, as there 

were 114 objects in the task. This vector was correlated between ROIs. Third, analyses examined 

functional connectivity as the correlation between ROI’s trial-wise activations (averaged across 

voxels); often referred to as beta series functional connectivity (Rissman et al., 2004). 

2.7. Linking large-scale representation and ROI-ROI correlations 

The final set of analyses sought to link those representational scale to ROI-level information 

processing. For this, the analyses used the NSMROI × NSMROI correlation matrices generated just 

above. For each participant and each of the four stages, the mean correlation was computed among 
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ROIs within the occipital and inferior temporal lobes. For example, as there are 32 inferior temporal 

ROIs and thus 496 possible pairs of ROIs, the mean NSMROI × NSMROI  correlation amounts to 

averaging across those 496 pairs. Along with computing this mean, for each participant and each of 

the four stages, the degree of large-scale visual and semantic representation was also calculated. 

This was done using the initial technique, which measured voxel-wise correlations while pooling 

every inferior temporal lobe ROIs’ voxels and then performed a second-order correlation with a 

semantic model RSM. Thus, for the 60 participants and four stages, one measure of the NSMROI × 

NSMROI  correlations and one measure of the degree of large-scale representation were computed. 

These 240 data points were submitted to a multilevel regression, linking the two measures: Large 

scale RSA ~ 1 + ROI corr + (1 | participant). For the analysis of the occipital lobe, ROI corr was 

strongly linked to “small scale RSA” for visual and semantic coding (ps < .001), and the degree of 

small-scale RSA effects was added as a covariate. The significance of the fixed effect linking the 

measures was evaluated using the lmerTest package (Kuznetsova et al., 2017). 

3. Results 

3.1. Standard representational similarity analysis 

Before distinguishing areas along the small/large distinction, we performed a traditional 

RSA analysis as a reference point. We parcellated the brain into 210 neocortical ROIs using the 

Brainnetome Atlas (mean size = 4.9 cm3). For each ROI, an NSM (Neural Similarity Matrix) was 

generated via across-trial correlations of the ROI’s voxels. Each ROI’s NSM was then correlated 

with a model RSM corresponding to perceptual features (early convolutional neural network 

activation) or semantic features (word2vec embedding). Next, second-order RSM × NSMROI 

correlations were computed separately for each participant and each of the experiment’s four stages. 

The correlation coefficients were averaged across stages by participant and submitted to one-sample 

t-tests for the group-level analysis (Figure 2). Perceptual information was overwhelmingly 
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represented in posterior areas, while semantic representations were more anterior and spatially 

diffuse – consistent with earlier work (Clarke & Tyler, 2014; Davis et al., 2021; Martin et al., 2018). 

However, more elaborate analyses are needed to disentangle whether these patterns within 

individual ROIs wholly capture population codes or just components of larger ones. 

 

Figure 2. Traditional RSA results for perceptual or semantic coding. RSM (perceptual or semantic) × 

NSMROI correlations were performed separately for 210 neocortical. After averaging the correlation 

coefficients across the four stages, the data were submitted to one-sample t-tests whose results are shown 

here. Although 210 ROIs were tested, no correction for multiple comparisons in significance testing was 

applied, as these maps are simply meant as a reference for the later analyses. 

3.2. Large and small-scale RSA 

Our next analysis examined small-scale and large-scale coding across four areas: the 

occipital lobe, inferior temporal lobe, parietal lobe, and prefrontal cortex (PFC) (volume range = 

138-288 cm3). We contrasted RSA effects between (i) a baseline NSM capturing the within-ROI 

coding, and (ii) an NSM that also accounts for large-scale codes spanning multiple ROIs. For an 

area’s baseline NSM, we averaged its constituent ROIs’ NSMs to form NSMm-small (Figure 3A). 

Then, to model synergistic relationships, the voxels from its multiple ROIs were pooled (effectively 

producing one huge ROI), and voxel-wise correlations were used to define NSMlarge. The two NSMs 

were then separately submitted to second-order correlations. For the results, if an area’s NSMlarge 
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better tracks a model RSM, this would indicate that the area holistically encodes more information 

than the sum of its parts. 

 

Figure 3. RSA results for small or large-scale coding. A. Illustration of the methodology used to generate 

the small/large-scale NSMs. This example is based on the 22 occipital ROIs. B-E. Results of the RSM 

(perceptual or semantic) × NSM (small or large) correlations for the four large areas tested. Dots represent 
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individual participants, and the dashed lines indicate pairs from the same participant. Significance stars 

reflect paired t-tests or interactions from repeated-measure analyses of variance (ANOVAs). *, p < .05; **, p 

< .01; ***, p < .001; ****, p < .0001. 

The occipital lobe emerged as a core for processing visual features but showed no signs of 

encoding information in a large-scale fashion (Figure 3B). In fact, particularly strong RSA effects 

emerged specifically for small-scale coding, suggesting the occipital lobe was characterized by 

particularly localized modules. This is a double dissociation relative to the inferior temporal lobe;  

the two-way Area (occipital/inferior temporal) × Scale (small/large) interaction for perceptual 

information is significant (F[1, 59] = 42.89, p < .0001). By contrast, the strongest inferior temporal 

lobe effects were seen for semantic representation and large-scale coding (Figure 3C). Measuring 

the Area × Scale interaction now for semantic information is again significant (F[1, 59] = 32.69, p < 

.0001). In the parietal lobe and prefrontal cortex, differences between coding sizes were smaller or 

non-existent (Figures 3D & 3E), pointing to the uniqueness of the occipital lobe’s small-scale 

coding and the inferior temporal lobe’s large-scale coding. 

 Alternative analytic approaches affirm these results. We tested an alternative approach to 

semantic modeling – using the last layer of the VGG16 – and reproduced the above interaction, 

showing that the inferior temporal lobe encodes specifically semantic information in a large-scale 

fashion (Supplemental Materials 2). Next, to potentially better disentangle small-scale from large-

scale effects, we revised the large-scale NSM to be based on across-trial correlations between ROIs’ 

average activations (i.e., effectively treating each ROI as a single voxel; Supplemental Materials 

3). This approach reproduced the prior interaction effects above on small-scale occipital 

representations of perceptual information and large-scale inferior temporal representations of 

semantic information. Additional analyses demonstrated significant large-scale coding effects in the 

inferior temporal lobe, even when regressing single ROI’s small-scale NSM separately, establishing 

that the wider patterns must reflect interactions between regions (Supplemental Materials 4). 

Further analyses showed how large-scale semantic coding effects linked to the inferior temporal 
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generally also emerge when examining the present study’s task stages individually rather than 

pooling their data (Supplemental Materials 5). Altogether, the findings consistently suggest that 

the inferior temporal lobe is organized such that relatively far-flung neuronal elements coordinate to 

represent semantic information as an integrated unit.  

3.3. Redundancy in each area’s coding  

The next stage of our analysis sought to address regional redundancy in visual and semantic 

processing. If a set of regions form integrated computational units with large-scale population 

codes, then it is expected that they will organize to minimize redundancy in their information 

processing, per the efficient coding hypothesis (Barlow, 1961). To test this hypothesis, we addressed 

regional redundancy for representational, neural pattern, and similarity across time (i.e., “functional 

connectivity”). We first computed NSMROI × NSMROI correlations between ROIs (Huang et al., 

2024),which the degree that two regions differentiate the same pairs of objects. Each pair of ROIs’ 

correlations were computed for all four task stages then averaged. Compared to the mean 

representational similarity among occipital (mean r = .36 [.34, .38]), parietal (r = .33 [.32, .34]) and 

PFC (r = .31 [.30, .33]) regions, representational similarity in the inferior temporal lobe was 

markedly decreased (r = .26 [.25, .28]; Cohen’s d = -1.9 in comparison to the occipital lobe). These 

results suggest that inferior temporal regions display uniquely low levels of redundancy in 

information coding (Figure 4A).  
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Figure 4. Heterogeneity in temporal lobe processing. The three rows represent ROI-ROI correlations 

between (A.) small-scale NSMs, correlated separately for the four tasks then averaged, (B.) neural pattern 

similarity (NPS) measures, computed and correlated separately for the six possible pairs of two tasks, then 

averaged (C.) functional connectivity, correlated separately for the four tasks then averaged; functional 

connectivity is not an information measure but is provided as a point of comparison Each dot in jitter plots 

next to each matrix represents one participant’s average correlation within the specified anatomical region. 

Cohen’s ds are reported from paired t-tests comparing the occipital and inferior temporal lobes. In the glass 

brains on the right, each marker corresponds to one ROI and the marker size represents the ROI’s mean 

correlation with its 10 physically closest neighbors in the same hemisphere. 
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Next, we exploit the multi-stage nature of our study to evaluate how different lobes may 

vary in the extent their constituent regions specialize in discriminating different concepts/concepts. 

This analysis adapts standard approaches to neural-pattern similarity analysis: If one ROI shows a 

consistent voxel-wise signature to a “cat” stimulus across a visual image of a cat and a verbal cue 

“cat”, then it can be said the ROI represents the concept “cat”. If said ROI does not show a 

consistent signature to a “house” stimulus but another ROI does, this indicates that the two ROIs are 

specialized for discriminating different concepts. We formally tested this by preparing an item-wise 

measure of neural-pattern similarity for each ROI (averaged across the six possible pairs of the four 

task stages) and then correlating this measure across ROIs. As in the analysis of representational 

similarity above, the correlations were again strikingly lower among inferior temporal regions 

(Figure 4B). Hence, there is a heightened degree of regional specialization for concepts in the 

inferior temporal lobe, further evidence of uniquely low redundancy in inferior-temporal 

information processing. 

Lastly, to address coordination of regions independent of information coding we computed 

similarity across time, (i.e., “functional connectivity”) by examining the correlation between ROIs’ 

mean univariate activity timeseries. In our framework, functional connectivity quantifies the 

similarity in the univariate fluctuations between regions but is not a measure of the information 

processing performed by these regions. Accordingly, this analysis yielded less pronounced inferior-

temporal drops (Figure 4C), indicating that these other trends specifically concern information 

coding. Taken together, the relatively lower correlations in representational and task-general 

similarity within the inferior temporal lobe are consistent with the area performing coordinated 

large-scale computations specific to information processing. 
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3.4. Large-scale representation and low redundancy 

The final analyses assessed more direct relationships between information processing and 

redundancy. We specifically examine how visual or semantic representations in the occipital lobe or 

inferior temporal lobe may be linked to the level of redundancy in these areas. Based on the results 

thus far, we expect that the strong large-scale semantic representation in the inferior temporal lobe 

is linked to lower redundancy among inferior-temporal regions’ coding. For each participant and 

each of the four study stages, we calculated each area’s large-scale RSA effects (Figure 3C) and 

degree of redundancy among its regions (mean NSMROI × NSMROI; Figure 4A). Submitting these 

measures to a multilevel linear regression reveals that, in the inferior temporal lobe, large-scale 

representation of semantics is tied to lower redundancy (β = -.17 [-.30, -.04], p = .01; Figure 5). 

This effect is not significant when testing the cross-links between inferior-temporal redundancy and 

perceptual coding (β = -.06 [-.21, .09], p = .43), occipital redundancy and semantic coding (β = -.02 

[-.06, .03], p = .50), or occipital redundancy and perceptual coding (β = .04 [.00, .08], p = .03; note, 

this effect is in the opposite direction). Hence, uniquely strong large-scale representation in the 

inferior temporal lobe relates to the area’s uniquely low level of redundancy between its regions’ 

information processing. 

 

Figure 5. Assessing the link between distributed representation and regional correlations. Each dot 

corresponds to the data of one session from one participant. The x-axis corresponds to the mean NSMROI × 

NSMROI correlation, averaged across the inferior temporal lobe as in Figure 4A. The y-axis corresponds to 

the distributed RSA effect, computed as in Figure 3. The dashes show the negatively sloped line of best fit. 
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4. Discussion 

The present research aimed to clarify the organization of computation and the size of 

population codes across the brain. The research yielded three conclusions. First, we performed RSA 

at different spatial scales, which indicated that, in the occipital lobe, perceptual processing is split 

across small-scale population codes. In contrast, inferior temporal information processing is 

distributed in a way not found anywhere else in the cortex, such that distant inferior temporal 

regions synergistically interact to encode semantic features. Second, we assessed the relationship 

between inferior temporal regions and found that the lobe is uniquely characterized by its 

constituent regions specializing in representing and distinguishing different objects. Third, we 

conducted analyses linking these different levels and showed that individual regions specializing in 

the information they encode promotes large-scale representation of semantic information. Overall, 

these results describe how the architecture of object processing in the ventral stream supports 

efficient information processing. 

Perceptual information was most strongly represented in the occipital lobe and best modeled 

in terms of small-scale codes (Figure 3; supplemental materials Figures S1-S3). Our analyses 

defined perceptual information based on the first pooling layer of a convolutional neural network, 

which captures features like color, shape, and texture (Simonyan, 2014). Prior work has shown how 

these different aspects of visual function are relegated to distinct areas (Cavina-Pratesi et al., 2010; 

Rolls et al., 2023). Our results add that these distinct areas display relatively minimal coordination 

in information processing along with relatively high redundancy,  pointing to a highly modular 

structure producing contained small-scale population codes. This conclusion is consistent with 

lesioning research showing how V4 lesions destroy color processing but leave motion processing 

largely intact (Zeki, 1990), while V5 lesions do the opposite (Newsome & Pare, 1988). It is 

interesting to speculate on why small-scale coding may benefit the occipital lobe. In principle, more 
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interconnected networks can encode more information (Roudi & Latham, 2007). Yet, as the 

computer vision literature shows, fully connected layers are often sub-optimal at early stages, and 

restricted convolutional neurons ease training (Krizhevsky et al., 2012). In the human brain, a 

predisposition for modularity in early vision may similarly benefit perceptual development. 

Contrasting the occipital patterns, our RSA results on semantic representation point to large-

scale coding in the inferior temporal lobe (Figures 3; supplemental materials Figures S1-S3). That 

is, information coding is organized such that different inferior temporal lobes coordinate to 

efficiently represent semantic information. Interestingly, prior work mapping distributed coding of 

semantics has more often focused on the parietal, frontal, or lateral temporal lobes (Carota et al., 

2021; Huth et al., 2016; Kidder et al., 2025; Meersmans et al., 2020). Further, research on how 

information is linked across sensory modalities has found limited inferior temporal patterns 

(Fernandino et al., 2016, 2022; Tong et al., 2022). Yet, when our analyses found that the inferior 

temporal lobe displayed the strongest large-scale coding. As other regions largely did not show 

heightened large-scale coding effects, this may be a powerful angle through which to see the 

inferior temporal lobe specifically. Potentially, this functionality relates to the inferior temporal 

lobe’s central role in semantic memory encoding and retrieval. In general, a large set of neurons 

may better support a large semantic space than multiple smaller sets of neurons (Elhage et al., 

2022), and these efficiency gains may be particularly valuable for memory. 

We additionally analyzed how a large-scale-coding system may organize its constituents to 

minimize redundancy. This involves correlating the representational signatures of neighboring 

regions (Figure 4; Supplemental Materials Figure S4). Within the inferior temporal lobe, NSM × 

NSM and NPS × NPS correlations are low between regions – markedly decreased compared to any 

other brain system. That is, inferior temporal ROIs highly vary in which objects they predominantly 

encode (NPS results) and which pairs of objects they predominantly distinguish (NSM results). This 
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speaks to the synergy results on the inferior temporal lobe functioning as one or a small number of 

large computational units with great interconnection. Additionally, this finding aligns with 

prominent theories of inferior temporal organization focusing on its many category-specialized 

structures – e.g., for faces, locations, body parts, numbers, and letters (Kanwisher, 2010; Pitcher et 

al., 2009). Our stimuli were diverse and not organized around known categories, and the present 

results suggest heterogeneity and specialization are general properties of the inferior temporal lobe.  

These ROI-level properties support synergistic interactions and larger-scale representation 

per our final correlations between these levels (Figure 5). Our “integration account” of the inferior 

temporal lobe is not at odds with existing category-specialization theories. Instead, these are 

different sides of the same coin. For instance, rather than viewing the FFA and PPA as 

independently processing faces and locations respectively, we can conceptualize them as 

coordinating to encode both faces and places collectively. This is a special form of specialization, 

which differs from how the occipital lobe processes information in small population codes. Indeed, 

whereas the V4’s involvement in color coding and V5’s involvement in motion processing are 

narrow, the FFA plays a rich role in processing objects more generally (Haist et al., 2010; Zachariou 

et al., 2018). This is consistent with the FFA contributing to collective representations rather than 

operating in isolation. 

In summary, the brain is a highly distributed representational system. Yet, the nature of this 

distribution varies according to tractable spatial and informational patterns. In some areas, 

information processing is segmented across regions that operate fairly independently. Other areas 

function more as synergistic collectives during information processing, where the loss of a region 

greatly hinders a large-scale population code. This dimension is particularly valuable for 

understanding the ventral stream. Incoming information begins as small perceptual codes in the 

occipital lobe and advances into large-scale semantic representations in the inferior temporal lobe. 



27 

Future studies may also consider how representations may not be entirely organized into contiguous 

voxels but may emerge from synergistic interactions within a spatially disparate (non-contiguous) 

network. Further studies may also benefit mapping distribution more precisely than just along small 

or large scales, potentially developing atlases based on information synergy and redundancy 

properties. Broadly, the brain varies in the scale of its computational units, and understanding this 

dimension is key to seeing how neural structures promote efficient information coding. 
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