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Abstract 

While numerous researchers claim that the minimization of prediction error (PE) is a 

general force underlying most brain functions, others argue instead that PE minimization drives 

low-level, sensory-related neuronal computations but not high-order, abstract cognitive operations. 

We investigated this issue using behavioral, fMRI, and EEG data. Studies 1A/1B examined 

semantic- and reward-processing PE using task-fMRI, yielding converging evidence of PE’s 

global effects on large-scale connectivity: high-PE states broadly upregulated ventral-dorsal 

connectivity, and low-PE states upregulated posterior-anterior connectivity. Investigating whether 

these global patterns characterize cognition generally, Studies 2A/2B used resting-state fMRI and 

showed that individuals continuously fluctuate between ventral-dorsal (high-PE) and posterior-

anterior (low-PE) dynamic connectivity states. Additionally, individual differences in PE task 

responses track differences in resting-state fluctuations, further endorsing that these fluctuations 

represent PE minimization at rest. Finally, Study 3 used combined fMRI-EEG and showed that 

these resting-state ventral-dorsal and posterior-anterior PE networks specifically oscillate at 3-6 

Hz. This whole-brain layout and timeline together speak to high/low-PE fluctuations playing a 

role in integrative and general sub-second cognitive operations. 

Keywords: Predictive coding, dynamic connectivity, bimodal, oscillations 
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1. Introduction 

The neuroscientific literature is replete with claims that one of the brain’s primary 

functions is to model its environment, generate predictions, and refine its activity to minimize 

prediction error (PE). One popular but limited hypothesis is the brain uses PE mechanisms at 

neuronal or regional levels (local PE hypothesis).1,2 This idea has been useful in various low-level 

functional domains, including early vision1 and dopaminergic reward processing.3  

Beyond these areas, some theorists further claim that PE propagates through perceptual 

pathways and can elicit downstream cognitive processes to minimize PE.4–7 For example, PE 

might be minimized via attentional re-orienting in parietal regions,8,9 memory encoding in the 

medial temporal lobes,10,11 and language learning or category-updating in temporal areas.12–14 Yet 

more abstract functions like cognitive processing of emotion,4 Theory of Mind,5 and others7,15 

have likewise been described as PE minimization. Following this line of reasoning, even cognition 

without exogenous stimuli may reflect the minimization of PE. For instance, daydreaming about 

what food you will eat later can be seen as an effort to avoid future sub-optimal food choices. 

Coordinating cortical mechanisms for sensation, decision-making, and autobiographical memory, 

one can describe cognition as a series of mental operations seeking to minimize PE. We refer to 

this idea – PE minimization is a principle that broadly coordinates brain functions of all sorts, 

including abstract cognitive functions – as the global PE hypothesis. 

Whereas the local PE hypothesis is supported by abundant evidence, the global PE 

hypothesis is difficult to evaluate experimentally.16–18 In particular, it is challenging to isolate 

high-level and multifaceted cognition processes in a way that deters alternative explanations 

linked to other neural mechanisms or stimulus-specific functions. Yet, doing so would yield key 

evidence and provide direction for the variety of neurocognitive theories attempting to unify all 
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levels of brain function under a PE lens.4–7,15 Hence, we pursued this difficult goal, which 

involved a three-pronged approach (Figure 1).  

 

Figure 1. Task design and graphical summaries of analytic strategies. (Study 1) Two task-fMRI studies 

were conducted to identify the connectivity patterns upregulated by high or low PE. (A) In each trial, 

participants saw a scene-object pair and were asked to report how likely it would be to find the object in 

the scene using a 4-point scale that was active while the object was on screen. (B) Separate participants 

completed a gambling task wherein each trial they made a binary choice (“?” screen) and were then told 

whether the choice caused them to earn money (upward arrow) or lose money (downward arrow). The “+” 

panel represents a 15 s fixation period between blocks. Both earning or losing money could elicit high or 

low PE, depending on whether it deviates from prior trials’ outcomes. (Study 2) (A) Using rs-fMRI data 

collected from Study 1A participants, analyses examined changes in connectivity over time to assess 

whether participants spontaneously fluctuate between the high and low PE signatures found in Study 1.  

(B) Further analyses examined whether slight differences in Study 1B participants’ task-fMRI responses to 

PE mirrored differences in their rs-fMRI connectivity states. (Study 3) With rs-EEG-fMRI data from 

another pool of participants, analyses modeled the amplitudes of fMRI connectivity fluctuations over time 

and correlated this with EEG oscillatory power at different frequencies to assess which frequency best 

tracked the fMRI patterns. 
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First, we used task-fMRI to identify the functional connectivity signatures of high-PE and 

low-PE states. Few prior PE studies have targeted PE, contrasting the hundreds that have targeted 

BOLD.19,20 Yet, compared to measuring activity, tracking connectivity better taps into the core 

concepts of integrative PE view that theorize about how signals communicate through the brain to 

propagate and/or minimize PE. For Study 1A, we conducted a task-fMRI study (N = 66) that 

elicited PE relative to pre-existing schemas and aimed to identify the connectivity patterns of low 

and high PE. For Study 1B, we analyzed a public task-fMRI study (N = 1000) that elicited reward 

PE using a gambling task. We expected to replicate the connectivity signatures of high and low PE 

seen in the schema task, showing that these networks emerge across starkly different PE tasks. 

Second, we reasoned that if PE processing characterizes cognition more generally, as 

proposed by the global PE hypothesis, then it should also occur in the absence of sensory stimuli. 

Studies 2A and 2B examined PE during resting-state fMRI (rs-fMRI) scans. Detecting PE 

processing during a resting-state fMRI scan required a template of PE processing.21 Thus, we used 

the connectivity patterns of high and low PE identified in Studies 1A/1B, and searched the rs-

fMRI data for these connectivity patterns. This strategy can link the Study 1 task manipulations 

and resting-state phenomena without a priori assumptions about individual brain regions’ exact 

roles.22 One potential problem of this approach is known as “reverse inference”: Finding the same 

networks during a PE task and during rest does not mean that the networks’ engagement during 

rest necessarily reflects PE processing. To engage with this issue, we examined if the engagement 

of putative PE networks during rest and during a PE task was significantly correlated across 

participants. Although this does not entirely address the reverse inference dilemma, the present 

research nonetheless engages with these widely speculated upon PE ideas more directly than any 

prior work. 
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 Finally, in Study 3 we used rs-fMRI-EEG simultaneous recordings (N = 21) to investigate 

whether participants fluctuate between high/low PE states at speeds consistent with whole-brain 

integrative cognitive operations. Although no prior fMRI study has focused on PE under this lens, 

this perspective is motivated by EEG research. Specifically, in EEG studies on executive function, 

PE detection elicits a frontal negativity around 100-400 ms23,24 that is followed by a centroparietal 

positivity around 300-800, indexing PE minimization processes such as redirecting attention, 

changing behavior, and updating working memory.23,25,26 These results indicate that shifts from 

high- to low-PE states can occur within a few hundred milliseconds. This idea is consistent with 

evidence that PE modulates Delta (1-4 Hz) and Theta (4–8 Hz) power, which aligns with the 

timing of error related negativity/positivity.27 Hence, in Study 3, we expected to find that 

participants’ high- and low-PE networks would fluctuate multiple times per second. Although 

such speed outpaces the temporal resolution of fMRI, combined fMRI-EEG analyses allow the 

detection of network oscillations at fast speeds. Identifying sub-second fluctuations would broaden 

the relevance of the present results, as they rule out that the PE states derive from various moods. 

Instead, sub-second fluctuations could reflect individual cognitive operations, such as working 

memory updating, attentional shifting, or other processes attributed to PE minimization. 

Moreover, we specifically expected that the fluctuations occur at Delta/Theta frequencies, which 

would also track the PE literature on oscillations and further validate that the resting-state patterns 

reflect PE minimization27 – that is, despite concerns about reverse inference and interpreting rs-

fMRI data, by demonstrating an additional link to Delta/Theta, this would constitute highly 

suggestive converging evidence for the PE interpretation 

 In sum, we investigated the global PE hypothesis in three steps. First, we used task-fMRI 

to identify large-scale brain networks associated with high and low PE. Second, we examined the 

recruitment of these networks during rs-fMRI and addressed the reverse inference problem by 
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linking rs-fMRI data directly to task-fMRI data of the same participants. Finally, we examined rs-

fMRI-EEG data to assess whether fluctuations between high- and low-PE networks occur 

sufficiently fast for the type of cognitive operations typically targeted by PE theories. 

2. Results 

2.1. Study 1 – Task-fMRI: Mapping the effects of prediction error on connectivity 

2.1.1. Study 1A – Manipulating semantic PE 

Participants completed a task wherein each trial they viewed a well-known scene, such as a 

farm. The scene was followed by either an object that was highly predictable given the scene (low 

PE; e.g. a tractor in a farm), an object that was less predictable but still possible (medium PE; e.g., 

an insect in a desert), or an object that was highly unpredictable (high PE; e.g. a poker table in a 

prison). Participants rated how likely it would be for each object to appear in its associated scene 

(1 = “Very unlikely”, 4 = “Very likely”), which confirmed that participants processed the stimuli as 

intended: Low-PE objects were rated as likely to appear in in the preceding scene (M = 3.67, SD = 

0.20), medium-PE objects as moderately likely (M = 2.11, SD = 0.30), and high-PE objects as 

unlikely (M = 1.28, SD = 0.24). Average response times for trials where participants gave the 

expected response were slightly slower for the high-PE condition (M = 1.87 s, SD = 0.40 s) 

compared to the low-PE condition (M = 1.79s, SD = 0.41 s; t[65] = 2.54, p = .014, d = 0.27). This 

response time gap is consistent with error-related slowing, although it is nominally small.28 

Overall, these behavioral trends suggest the suitability of the data for understanding the neural 

correlates of PE. 

In the fMRI data, we compared the different PE conditions’ beta-series functional 

connectivity, aiming to identify network-level signatures of high/low PE processing. Network-

level signatures could later be leveraged for detecting global trends in rs-fMRI data. To detect how 

groups of connectivity edges are all sensitive to high/low-PE information, we used a strategy 
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based on modularity analysis. For every connection among two regions of interest (ROIs), we 

performed a regression predicting the edge’s connectivity strength in each PE condition (coded as 

Low = -1, Medium = 0, High = +1; Figure 2A). This was used to produce a connectome matrix of 

beta values. Modules representing positive and negative effects were then identified by applying a 

variant of Louvain’s algorithm twice: once for a binary matrix of the 5% of edges showing the 

strongest Low > High effects and once for the analogous High > Low matrix (Figure 2B). 

 
Figure 2. Modularity behind the enhancing and weakening effects of prediction error. (A) Each 

neocortical connection was submitted to a regression predicting connectivity strength based on PE. For 

clearer visualization, the shown 46 x 46 matrix simplifies the original 210 x 210 matrix by averaging ROIs 

per anatomical labels. Supplemental Figure S1 shows the exact ROIs used on a glass brain, illustrating 

their precise anatomy. (B) Modularity was assessed in terms of the 5% of edges showing the most positive 

coefficients and 5% showing the most negative coefficients. (C) Two high-PE modules and two low-PE 

modules are shown. (D & E) The four modules can be described anatomically as connections among four 

anatomical quadrants. (F) Analyzing these anatomically defined connections shows a significant 

Connectivity-Direction x PE interaction (β [standardized] = .20, p < .001). Boxes indicate quantiles. 

Roughly, the high/low PE modules appear as connections among quadrants, consisting of 

the occipital cortex (OC), inferior parietal lobule (IPL), anterior temporal lobe (ATL), and 
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dorsolateral prefrontal cortex (LPFC, i.e., the inferior frontal gyrus [IFG] & middle frontal gyrus 

[MFG]) (Figure 2C-2E). That is, high PE enhanced ventral-dorsal connectivity (OC-IPL & ATL-

LPFC) whereas low PE enhanced posterior-anterior connectivity (OC-ATL & IPL-LPFC)  

(Figure 2F). This four-quadrant description omits some ROIs included in the modules (e.g., the 

lateral temporal component of the IPL-lPFC module; Figure 2C). These minor exclusions, in 

favor of a four-quadrant interpretation, are motivated by existing knowledge of prominent 

structural pathways among these quadrants. This interpretation is also supported by classifier-

based analyses showing connectivity within each quadrant is significantly influenced by PE 

(Supplemental Materials 2) along with analyses of single-region activity showing that these areas 

also respond to PE independently (Supplemental Materials 3). Hence, we proceeded with further 

analyses of these quadrants’ connections, which summarize PE’s global brain effects. 

2.1.2. Study 1B – Manipulating reward PE 

To confirm that the ventral-dorsal and posterior-anterior networks are indeed general 

signatures of high and low PE, respectively, we investigated their occurrence during a very 

different PE task: the gambling task from the Human Connectome Project (N = 1000).29,30 In each 

trial of this task, participants made a binary choice, then won or lost money as pre-determined. 

Our analyses modeled PE as the absolute difference between a trial’s monetary outcome and 

participants’ expectations given recent prior trials (i.e., relative to an exponential moving average). 

This strategy assigns a continuous PE measure to each trial, which was then split at the median to 

define high/low PE conditions. As a validation check, we confirmed that participants’ response 

times were slower after loss trials with high-PE feedback (M = 422 ms) compared to after loss 

trials with low-PE feedback (M = 418 ms) (t[999] = 7.46, p < .0001). This is consistent with 

expected post-error/surprise slowing,28 although given how slight the response-time difference 

was (4 ms), it was not expected to reflect any meaningful confound. 
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Analyses evaluated the consistency between the connectivity effects of PE in the present 

gambling task and those seen earlier in the semantic PE task. Here, functional connectivity was 

computed for high/low PE conditions. Then, a paired t-test between the two conditions was 

performed for each edge, which yielded a connectome-wide high/low contrast. This contrast 

matrix paralleled that of Study 1A, as evidenced by element-wise correlations of the matrices’ 

bottom triangles (Figures 2A & 3A, r = .27, p < .0001). Critically, the present data also 

reproduced Study 1A’s Connectivity Direction x PE interaction (F[1, 999] = 68.41, p < .0001; 

Figure 3B). This prominent correlation and reproduction point to strong task-general qualities of 

the identified global PE phenomena.  

 

Figure 3. Reproducing the posterior-anterior/ventral-dorsal PE effects using a gambling task. (A) This 

matrix represents high/low PE paired t-tests for each connection. Like Figure 2, a 46 x 46 regional matrix 

is shown rather than a 210 x 210 ROI matrix for clarity. (B) Low PE enhances posterior-anterior 

connectivity while high PE enhances ventral-dorsal connectivity but note the High > Low PE ventral-

dorsal effect is driven by ATL-LPFC connectivity, and the OC-IPL effect is minuscule. For the bars, the 

connectivity data was normalized by subtracting means across conditions. Boxes indicate quantiles. 

 In sum, Study 1A identified distinct global connectivity patterns linked to PE: High PE 

upregulates a ventral-dorsal network whereas low PE upregulates a posterior-anterior network. 

Study 1B reproduced these signatures using a very different PE task. This regularity points to PE 

processing as prompting general connectome-wide mechanisms. Yet, it remains to be tested 

whether PE processing applies to high-level cognition more broadly, including in the absence of 
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stimuli specifically designed to elicit PE. Thus, Study 2 investigated whether the ventral-dorsal 

and posterior-anterior networks are engaged when stimuli are absent, as would be expected if PE 

minimization is a fundamental function of the human brain. 

2.2. Study 2 – Rs-fMRI: Identifying connectivity fluctuations tied to prediction error 

2.2.1. Study 2A – Dynamic connectivity and global states 

We assessed whether the above correlates of high/low PE emerge as dynamic connectivity 

states in rs-fMRI data from Study 1A participants. In other words, we essentially asked whether 

resting-state participants are sometimes in low PE states and sometimes in high PE states, and if 

so, this would give credence to the idea that PE processing occurs even in the absence of stimuli. 

To formally test this, we first measured time-varying connectivity on a TR-by-TR basis.31 For 

example, OC-IPL connectivity strength in the first TR is the product of OC and IPL standardized 

activations in said TR (OCBOLD × IPLBOLD). Time-varying connectivity was computed for the 

edges among adjacent portions of the earlier four quadrants (Figure 4A). In turn, edge-edge 

correlations31 were calculated to form the Figure 4B matrix; this matrix shows, for example, that 

strong L OC-IPL connectivity coincides with weak L OC-ATL connectivity. Submitting this 

matrix to Louvain’s algorithm, in turn, yielded the two modules in Figure 4C: Here, module 1 

indicates that, when IPL-LPFC connectivity is strong, then OC-ATL tends to also be strong, and 

these two sets of edges make up a global state of strong posterior-anterior connectivity. Likewise, 

module 2 shows that OC-IPL and ATL-LPFC connectivity make up a ventral-dorsal state. These 

emerging states overlap strikingly with the previous task effects of PE, meaning that rs-fMRI 

scans show fluctuations between the signatures of low- and high-PE states.  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2025. ; https://doi.org/10.1101/2025.03.18.643969doi: bioRxiv preprint 

https://doi.org/10.1101/2025.03.18.643969
http://creativecommons.org/licenses/by/4.0/


12 

 

 
Figure 4. Dynamic connectivity modules. (A) Time-varying connectivity was computed between adjacent 

portions of the four bilateral quadrants from earlier. Given that each quadrant is composed of many ROIs, 

this involved computing time-varying connectivity for individual ROI-ROI pairs and averaging them to 

produce overall estimates. (B) Based on the time-varying connectivity of each edge, an edge-edge 

correlation matrix was produced. (C) Computing modularity of the edge-edge correlation matrix yielded 

the two illustrated modules. 

 2.2.2. Study 2B – Linking task and resting-state PE  

Study 2B had two goals. The first goal was to replicate the results of Study 2A in a 

different group of rs-fMRI participants (N = 1000). Fulfilling this goal, Study 2B yielded the same 

posterior-anterior and ventral-dorsal connectivity patterns during rs-fMRI (Figure 5A).  

 
Figure 5. Replication of the connectivity modules and subject-specific analyses. Performing the Study 2A 

modularity analysis using the Study 1B participants yields a similar pair of modules as in Figure 4 but with 

slight changes to the interhemispheric connections. 

The second goal of Study 2B was to address the aforementioned problem of “reverse 

inference”: Finding the same networks during a PE task and during rest does not imply that the 

networks’ engagement during rest necessarily reflects PE processing. By establishing these 

networks using two very different PE tasks (Studies 1A/1B), this deters non-PE interpretations of 

the networks specific to just one task. To further address this issue, we considered the evidence 
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that the anatomical organization of functional networks varies between individuals.32 Hence, if the 

recruitment of ventral-dorsal/anterior-posterior networks during rest is indeed related to PE, then a 

participant’s unique connectivity response to PE in the reward-processing task should match their 

specific patterns of resting-state fluctuation. Our focus is not on the overall strength of the task 

contrast and overall fluctuation magnitude at rest; the theoretical justification for these being 

linked seems questionable, as PE minimization is presumed to characterize every cognitive 

process of every single person’s brain. Yet, there should still be slight anatomical differences in 

where exactly these networks are positioned, and these differences should be consistent across the 

task-fMRI and rs-fMRI data. We tested whether this was indeed the case.  

To evaluate anatomical correspondence across task-fMRI and rs-fMRI, we analyzed these 

effects for subsets of the quadrants. From each quadrant, we randomly selected a pair of bilateral 

ROIs (one L ROI and its symmetric R ROI). Then, using just these eight ROIs, we calculated the 

strength of each participant’s task-fMRI effect (Connectivity Direction x PE interaction) along 

with the magnitude of their rs-fMRI posterior-anterior/ventral-dorsal fluctuation (mean absolute 

difference of time-varying connectivity, E[|PA – VD|]; see Study 3 and Methods). These two 

measures were computed for all 3,432 possible sets of eight ROIs. For each participant, the 

within-subject correlation was computed with respect to the 3,432 ROI sets with the expectation 

that these would be positive on average. A positive correlation would indicate that ROIs 

associated with stronger PE effects in the task are linked to stronger fluctuation at rest. This was 

indeed found and demonstrated to be significantly above zero by submitting the 1000 participants’ 

correlations to a one-sample t-test (mean r = .021, t[999] = 3.31, p < .001). Note that this 

nominally low correlation likely stems from the short task-fMRI scan length (only six minutes), 

which in turn causes the split-half reliability of a participant’s task contrast to be just .08 (the 

reliability of the rs-fMRI measure was much higher, see Supplemental Materials 4). Hence, a 
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nominally low correlation is to be expected given that reliability sets an upper limit on the possible 

correlation. This rs-fMRI is specific to the PE contrast in the task-fMRI data; if the same analysis 

instead performed with respect to a win/loss task-fMRI contrast, this produces an insignificant 

task-fMRI × rs-fMRI association (mean r = .006, t[999] = 1.18, p = .24). Hence, it can be firmly 

stated that a participant’s unique pattern of connectivity elicited by PE matches their fluctuations 

in resting-state scans.  

Studies 2A and 2B show that, even in the absence of stimuli, participants fluctuate between 

global connectivity states corresponding to high and low PE. Overall, these results endorse claims 

that abstract cognition is rooted in PE minimization. However, claims of PE unifying 

psychological concepts generally refer to mental operations that can occur fairly quickly – e.g., 

emotional responses, logical inferences, memory retrieval, attentional shifting, or working 

memory updating. This may seem to create a discrepancy with the results thus far, which are all 

based on fMRI with its slow temporal resolution. Yet, slow measurement does not imply that 

underlying neural processes are slow. Study 3 investigated this further. 

2.4. Study 3 – Rs-fMRI-EEG: Measuring fluctuation frequency 

To investigate the temporal properties of our putative global PE networks shifting between 

high/low PE states, we conducted analyses using fMRI-EEG simultaneous recordings from 

participants at rest. Our overarching strategy for detecting the fluctuation rate involved first 

modeling the amplitude of the fMRI connectivity fluctuations on a TR-by-TR basis. Then, we 

correlated this amplitude with EEG oscillatory power at different frequencies to assess which best 

aligned with the fMRI patterns (Figures 6A & 6B). We validated this strategy with simulations 

(Supplemental Materials 5). In brief, we specifically simulated a neural oscillator that varies in 

amplitude over time (Figures 6C-E) and reflects opposing posterior-anterior (PA) and ventral-

dorsal (VD) connectivity (Figure 6F). fMRI can measure time-varying connectivity but only at a 
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slow scale (i.e., modeled as the average connectivity across a TR; Figure 6G). Nonetheless, the 

frequency of the oscillator producing these fMRI measurements can be discerned by linking the 

magnitude of fMRI fluctuations (|PA – VD| in Figure 6H) to EEG oscillatory power at different 

frequencies (Figures 6I-K). If VD and PA strengths fluctuate at 3 Hz, then |VD – PA| in fMRI 

will most strongly correlate with 3 Hz power in EEG; notice how the dots in Figure 6H follow the 

dots in Figure 6J (3 Hz) better than the dots in Figure 6I (0.5 Hz) or Figure 6K (10 Hz). This 

same logic can be applied to experimental data to determine the frequency at which individuals 

fluctuate between posterior-anterior and ventral-dorsal dynamic connectivity states. 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2025. ; https://doi.org/10.1101/2025.03.18.643969doi: bioRxiv preprint 

https://doi.org/10.1101/2025.03.18.643969
http://creativecommons.org/licenses/by/4.0/


16 

 

Figure 6. Correlating connectivity fluctuations and oscillatory power. (A) If posterior-anterior (PA) and 

ventral-dorsal (VD) time-varying connectivity measurements at each TR reflect samples from an oscillator, 

then their absolute difference (|PA – VD|) will correlate with the oscillator’s true amplitude (A) even if the 

oscillator’s frequency outpaces fMRI’s temporal resolution. (B) Correlations between |PA-VD| and 

amplitude/power at different frequencies allow assessing the frequency of the oscillator generating the 

PA/VD fluctuations; amplitude (A) and power (A2) are equivalent for the analyses, which used Spearman 

correlations. The fMRI-EEG analytic strategy is motivated by simulations: (C) One sine wave is used as a 

simulation input. (D) An autoregressive time series is also used as an input. (E) The product of the sine 

wave and autoregressive time series defined the simulated oscillator, which represents how fluctuations 

between states may vary in intensity over time. (F) Ventral-dorsal (VD) connectivity is defined as the sine-

amplitude product, and posterior-anterior (PA) connectivity is defined as the inverse of this product. (G) 

Representing brain data recorded using fMRI, the VD and PA dots here are the average over the TR 

windows. No hemodynamic response function convolution was applied when making this figure for the sake 

of clarity, but convolution was performed for the actual simulation results in Supplemental Materials 5. (H) 

Using the PA and VD dots, the |PA – VD| differences were computed. (I-K) Green lines represent the time-

frequency decomposition of the sine-amplitude product. The dots represent the power averaged for each TR 

window. The first TR window for 0.5 Hz power was removed as it was susceptible to edge artifacts. 

Our analyses used a public dataset of fMRI-EEG simultaneous recordings from 

participants at rest (N = 21).33 We first measured time-varying connectivity for the ventral-dorsal 

and posterior-anterior edges, as in Study 2B. We calculated the absolute difference between the 

two at each TR, |PA – VD| to generate connectivity-amplitude time series. Turning to the EEG 

data, we measured oscillatory power at each frequency from 0.5 to 50 Hz (bin size = 0.5 Hz). To 

match the power time series with fMRI’s temporal resolution, the power data were averaged by 

TR (e.g., averaging 0-2099 ms to align with the first 2.1 s TR volume) and convolved with the 

hemodynamic response function.34 

Spearman correlations were measured between the connectivity-amplitude time series and 

each frequency’s power time series. Group statistics and effect sizes were then established by 

submitting each participant’s correlation to a one-sample t-test relative to zero. The analysis was 

first done using power averaged across frontal electrodes, as these are the typical focus of PE 

research on oscillations.27,35 Correlations revealed that connectivity-fluctuation amplitude was 

most associated with frontal Delta/Theta and specifically 3-6 Hz power (Figure 7A, Table 1). 

Similar albeit weaker trends emerged when correlating fluctuation amplitude with power averaged 

across a larger pool of electrodes, including central and parietal ones (Figure 7B). Confirmatory 
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analyses demonstrated that these oscillatory links specifically reflect associations with the 

posterior-anterior/ventral-dorsal absolute difference and not the signed difference or the overall 

level of connectivity (Supplemental Materials 6). Hence, participants most likely fluctuate 

between high/low PE global connectivity states at 3-6 Hz. This is notably consistent with 

established links between PE and Delta/Theta27,35 and further endorses that these fluctuations 

reflect PE processing at rest. 

 

Figure 7. Correlations between fluctuation amplitude and oscillatory power. For all participants, 

Spearman correlations were measured between connectivity-fluctuation amplitude and power at every 0.5 

Hz interval from 0-0.5 Hz. Visualized here, each dot represents the Cohen’s d effect size from a one-sample 

t-test assessing whether the mean correlation surpassed zero. This was done using either (A) power 

averaged across the shown frontal electrodes or (B) power averaged across the shown frontal/central/ 

parietal pool of electrodes.  

Table 1. Mean correlations between connectivity fluctuation and frontal oscillatory power. The table lists 

the Spearman correlations between fluctuation amplitude and the frontal power, averaged across an 

established frequency band (e.g., Delta is the average of 1 Hz power, 1.5 Hz power, … 3.5 Hz power).  

*, p < .05; **, p < .01; *** p < .0001. 

Frequency ranges Mean correlation  Cohen’s d 

Delta 1-3.5 Hz .042 [.027, .056]     1.24 *** 
Theta 4-7.5 Hz .041 [.025, .056]     1.13 *** 
Alpha 8-12.5 Hz .029 [.012, .047]     0.71 ** 
Beta 13-29.5 Hz .029 [-.002, .059]     0.41 * 

Gamma 30-50 Hz .037 [.010, .064]     0.59 * 

3. Discussion 

 The present research conducted task-fMRI, rs-fMRI, and rs-fMRI-EEG studies to clarify 

whether PE minimization constitutes a global and task-general neural mechanism. First, the two 
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task-fMRI studies (Studies 1A/1B) yielded converging evidence that high-PE stimuli upregulate 

connectivity between ventral and dorsal regions (OC-IPL and ATL-LPFC), whereas low-PE 

stimuli upregulate posterior-anterior connectivity (OC-ATL and IPL-LPFC). Second, the two rs-

fMRI studies (Studies 2A/2B) indicated that the brain, even while at rest, shifts between global 

states of strong posterior-anterior connectivity (low-PE state) and strong ventral-dorsal 

connectivity (high-PE state). Importantly, the recruitment of ventral-dorsal and posterior-anterior 

networks during rest correlated with the recruitments of these networks during a PE-processing 

task across participants. Finally, the rs-fMRI-EEG study (Study 3) showed that these connectivity 

fluctuations correlate primarily with Delta/Theta oscillatory (EEG) power and suggest that the 

high/low PE states generally fluctuate at 3-6 Hz. Below, we discuss these three findings in 

separate sections. 

Detecting that high PE upregulates ventral-dorsal (OC-IPL & ATL-LPFC) connectivity 

matches the handful of prior studies on how PE influences interactions between regions. On the 

posterior side of the ventral-dorsal network, finding that high PE enhanced OC-IPL connectivity is 

consistent with PE prompting attentional shifts by parietal cortex.8,9 For this interpretation and 

those upcoming, note that these mechanisms will likely only apply to subsets of the full ROIs; the 

OC and IPL are functionally heterogeneous structures and our analyses focused more on broad-

scale patterns rather than drawing neuroanatomically narrow conclusions. On the anterior side of 

the ventral-dorsal network, the association between high PE and ATL-LPFC connectivity aligns 

with findings on PE signals flowing between ATL and PFC.36,37 Given ATL’s role in encoding 

semantics and abstract information,13,38–40 ATL-LPFC interactions could reflect conflicts between 

incoming stimuli and existing mental models detected in ATL and propagated to PFC,37 and/or 

signals from the PFC to update categories in ATL.37 Altogether, ventral-dorsal connectivity could 

underlie interactions between temporal lobe representations and frontoparietal control processes, 
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with OC-IPL connectivity reflecting more perceptual interactions and ATL-LPFC connectivity 

representing more semantic interactions. 

In contrast with high PE, low PE was tied to greater connectivity between posterior and 

anterior brain regions. On the ventral side of the posterior-anterior network, low PE enhanced OC-

ATL connectivity along the ventral stream. This finding is consistent with perception studies 

showing how the ventral stream encodes stimulus predictions (schemas) that guide processing.41 

Strong OC-ATL connectivity under low PE could reflect information automatically flowing along 

the ventral pathway, in the absence of the frontoparietal control processes demanded by high PE. 

On the dorsal side of the posterior-anterior network, low PE boosted IPL-LPFC connectivity, 

which points to the relevancy of the frontoparietal network, although this network boasts many 

functions and its exact role for low PE processing is unclear.42 Overall, these posterior-anterior 

patterns recapitulate well-known dorsal frontoparietal and ventral stream pathways that have been 

central to the focus of attention and visual processing, respectively.  

These functional pathways, which form the backbone of our PE topology, also recapitulate 

respective structural dorsal (superior longitudinal fasciculus; SLF) and ventral (inferior 

longitudinal fasciculus, ILF, uncinate fasciculus) pathways. Supporting these inferences, the SLF 

has been associated with cognitive control and attention,43,44  and the ILF has been associated with 

the semantic processing of objects,45  faces,46 and words.47 It is therefore unsurprising that low PE 

is associated with such well-worn, structurally connected pathways, and future studies may help to 

shed light on how major fiber pathways support a global topology of prediction error. 

Furthermore, that high PE is associated with a connectivity pattern that runs contralaterally to 

these well-worn pathways is also consistent with the idea that novel connectivity patterns are 

necessary to form coherent associations between schematically incongruent stimuli. Nonetheless, 
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the consistencies between functional and structural topologies serve to build an inferential bridge 

linking the cognitive processes at play in PE tasks to resting state. 

Our rs-fMRI investigation examined whether the minimization of PE can be a task-general 

driver of cognition independent of the type of stimulus encountered. The resting-state analyses 

indeed found that, even at rest, participants’ brains fluctuated between strong ventral-dorsal 

connectivity and strong posterior-anterior connectivity, suggesting shifts between states of high 

and low PE. This conclusion may be controversial as it relies on reverse inference; it is impossible 

to establish that the task networks only reflect PE and that the rs-fMRI patterns are not due to 

some other variable manipulated by the task. Nonetheless, several key concerns are addressed. 

First, we established these signatures across two distinct PE designs (Studies 1A/1B), constraining 

the possible interpretations of the networks. Second, we linked the recruitment of ventral-dorsal 

and anterior-posterior networks during rest to the engagement of these networks during a PE task 

in the same participants (Study 2B), creating a sharp parallel between the task effects and resting-

state functioning. Although further work is warranted to confirm the function of ventral-dorsal and 

anterior-posterior during rest, the present research remains, we believe, the most thorough 

investigation of the type of abstract PE processes that lie at the core of contemporary theories. 

While such inferences are necessarily speculative, it is worth considering what 

minimization of PE could look like in a resting-state scan, or more succinctly during the 

cognitions that we expect to be active during rest.48,49 One possibility is that PE could compel 

episodic replay or episodic simulation, consistent with the notion that perceptual decoupling and 

episodic memory retrieval are necessary conditions for the self-generation of a train of thought 

unrelated to the external environment.50,51 For instance, in their stream of thought, a participant’s 

working memory may disengage from their immediate scanner environment, and retrieve 

information about a recent discussion with a colleague. In turn, the participant may wonder how 
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this discussion resolved (PE detection; high PE), prompting them to retrieve a similar experience 

to resolve this uncertainty (PE response; low PE). This description casts PE as a spark for episodic 

replay.15 In turn, the participant may consider that their comment was rude (PE detection) and 

predict how their colleague will treat them in the future (PE response). To be clear, these types of 

mental processes are not exclusive to resting-state scans and could likewise occur when 

participants experience an event live. Yet, by demonstrating the relevance of PE to cognition 

during resting-state scans, we rule out that the currently identified networks are limited to lower-

level sensory violations. In turn, the present findings support theories about how many aspects of 

executive function and high-level cognition are rooted in PE minimization.4–7,52 

 Finally, our third approach for investigating the global PE hypothesis was to examine if 

high and low PE networks fluctuate sufficiently fast for cognitive operations. As noted before, 

executive function EEG studies suggest that PE detection23,24 and PE minimization23,25,26 are 

separated by a few hundred milliseconds. This result matches evidence that PE modulates Delta 

(1-4 Hz) and Theta (4–8 Hz) power.27 Thus, we expected high and low PE networks would 

fluctuate multiple times per second. Indeed, the fMRI-EEG correlations in Study 3 showed that 

the ventral-dorsal and posterior-anterior networks fluctuate at a speed around 3-6 Hz.  

 Some prior studies have correlated EEG spectral signatures with fMRI functional 

connectivity in resting-state data,53 including by correlating fMRI measures with power, which 

was likewise averaged over intervals and convolved with a hemodynamic response function.34 

However, our work was unique because we specifically correlated power with the absolute 

difference between connectivity measures after establishing that those measures correspond to 

dynamic connectivity states. In turn, our interpretation shifts. Whereas these prior papers claimed, 

for instance, that an inverse correlation between functional connectivity and alpha indicates ties to 

alertness,34 we put forth that the correlations with oscillations reveal the frequency of the high/low 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2025. ; https://doi.org/10.1101/2025.03.18.643969doi: bioRxiv preprint 

https://doi.org/10.1101/2025.03.18.643969
http://creativecommons.org/licenses/by/4.0/


22 

 

PE-state fluctuations – an interpretation supported by the simulations of how underlying neural 

oscillators can produce BOLD and EEG measurements. 

Interpreting connectome-wide phenomena as changing multiple times per second may 

seem unlikely, given that much network research is based on fMRI and its slow temporal 

resolution. However, prior studies incorporating data from other modalities have likewise argued 

that, despite usually being measured slowly, network states can fluctuate at sub-second 

frequencies.54,55 Theoretically, the identified association between PE topology fluctuations and 

power in Delta/Theta frequencies agrees with the premise that these fluctuations reflect ongoing 

human thought. Such thoughts can be conceptualized as repeated manipulations of working 

memory, which can occur up to five times per second in humans56 and is indexed by Delta/Theta 

oscillations.57 Further research on other variables remains necessary to draw firm conclusions 

about specific cognitive mechanisms, although these timelines are consistent with the types of 

functions discussed by psychological PE theories – e.g., working memory states prompting 

memory recall or affective labeling to minimize PE could conceivably occur in ~200 ms.4,15 

To conclude, PE elicits brain-wide effects on connectivity, upregulating ventral-dorsal 

connectivity while down-regulating posterior-anterior connectivity. These patterns match global 

connectivity signatures seen in resting-state participants, who appear to fluctuate between high-PE 

(ventral-dorsal) and low-PE (posterior-anterior) states at 3-6 Hz. These results demonstrate the 

relevance of PE minimization beyond stimulus processing and provide an empirical foundation for 

the deluge of theories on the role of PE in abstract cognition. PE minimization may be the telos of 

the brain, while attentional reorienting, episodic retrieval, working memory updating, and other 

psychological processes may be how PE minimization is accomplished. In this way, the present 

results link neuroscientific literatures while also joining this work with more cognitively focused 

theories of the mind. 
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Data availability. The data collected for Studies 1A and 2A will be shared upon request via email 

to the corresponding author, Paul C. Bogdan, or principal investigators Roberto Cabeza and Simon 

W. Davis. The data used for Studies 1B, 2B, and 3 are available in public repositories; see the 

cited papers associated with those datasets.  

 

Code availability. The Python and R code used for every study has been made publicly available 

(https://github.com/paulcbogdan/FlucPE). This repository also contains the result images directly 

generated via the analysis code. 

 

4. Methods 

4.1. Study 1A – Task-fMRI 

4.1.1. Participants 

The Study 1A task-fMRI analyses were performed using data from a larger study on 

semantic processing, memory, and aging. Participants were recruited from the local community 

and screened for no history of brain injury or mild cognitive impairment. Sixty-six healthy 

participants completed the PE task, which included a younger adult subset (N = 35, Mage = 22.8 

[SD = 3.3], 64% female, 36% male) and an older adult subset (N = 31, Mage = 71.5 [SD = 4.5], 

64% female, 36% male). The two groups were not compared here. Of the 66 participants, two 

encountered scanner malfunctions that caused one run of data loss from each, but these partial 

datasets were still included in the analyses. There were no exclusions. The research was approved 

by the Duke University Institutional Review Board. 

4.1.2. Task design 

Participants viewed pictures of common scenes and objects. Each trial began with a picture 

of a scene (e.g., a farm or desert) shown for 3 seconds. Then, a blank screen appeared for an 

average of 3 seconds (jittered), followed by a picture of an object shown for 4 seconds. While the 

object was displayed, participants used a 4-point scale to indicate how likely it would be to find 

the object in the scene (1 = “Very unlikely”, 4 = “Very likely”). Across three runs, participants 

completed 114 trials: 38 high PE, 38 medium PE, and 38 low PE. For the high-PE condition, the 
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object-scene pairs were incongruent – e.g., a poker table (object) likely would not be found in a 

prison (scene) because prisoners’ leisure is restricted. For the medium PE condition, the object 

and scene were meant to be conceptually orthogonal – e.g., a bug could be found in a desert but 

not necessarily. For the low PE condition, the pairs were congruent – e.g., a tractor operates on a 

farm. All participants saw the same 114 objects and 114 scenes but counterbalanced under 

different configurations. For instance, the tractor was low PE for one-third of participants, 

medium PE for one-third, and high PE for one-third. The Results response times based on the 

77.2% of trials where participants gave the expected response: 1 likelihood for high PE and 4 

likelihood for low PE. Of note, the medium PE condition yielded slower responses than both 

conditions (M = 2.33 s, SD = 0.43) (comparisons of high/low to medium show a large difference, 

ps < .0001, ds > 1.96). These response time patterns suggest that the medium condition was more 

difficult, but low vs. high differences in the brain data would not be attributable to difficulty. An 

analysis that treats PE as a gradient from low-medium-high would be well positioned to establish 

that effects genuinely reflect PE rather than task difficulty, which would instead be reflected by 

strong medium PE connectivity. As part of the aforementioned wider memory study, on a previous 

day, participants completed a task where they viewed the objects without proceeding scenes. 

Additionally, on the day following the PE task, participants completed a surprise memory retrieval 

test. However, neither of these tasks’ data were analyzed here.  

4.1.3. MRI acquisition 

MRI data were collected using a General Electric 3T MR750 scanner and an 8-channel 

head coil. Anatomical images were acquired using a T1-weighted echo-planar sequence (96 slices 

at 0.9 × 0.9 × 1.9 mm3). Functional images were acquired using an echo-planar imaging sequence 

(repetition time = 2000 ms, echo time = 30 ms, field of view = 19.2 cm, 36 oblique slices with 

voxel dimensions of 3 × 3 × 3 mm). Stimuli were projected onto a mirror at the back of the 
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scanner bore, and responses were recorded using a four-button fiber-optic response box (Current 

Designs, Philadelphia, PA, USA). Functional resting-state images were collected from the 

participants using the same parameters (210 volumes, 7 minutes).  

The below descriptions of anatomical and functional preprocessing were automatically 

generated by fMRIPrep with the express intention that users should copy and paste this text into 

their manuscripts unchanged. 

4.1.4. Anatomical data preprocessing  

A total of two T1-weighted (T1w) images were found within the input BIDS dataset. All of 

them were corrected for intensity non-uniformity (INU) with N4BiasFieldCorrection,58 distributed 

with ANTs 2.3.3.59 The T1w-reference was then skull-stripped with a Nipype implementation of 

the antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as a target template. 

Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM), and gray-matter 

(GM) was performed on the brain-extracted T1w using fast (FSL 6.0.5.1).60 An anatomical T1w-

reference map was computed after registration of two T1w images (after INU-correction) using 

mri_robust_template (FreeSurfer 7.3.2).61 

Brain surfaces were reconstructed using recon-all (FreeSurfer 7.3.2),62 and the brain mask 

estimated previously was refined with a custom variation of the method to reconcile ANTs-

derived and FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle.63 

Volume-based spatial normalization to one standard space (MNI152NLin2009cAsym) was 

performed through nonlinear registration with antsRegistration (ANTs 2.3.3), using brain-

extracted versions of both T1w reference and the T1w template. The following template was 

selected for spatial normalization and accessed with TemplateFlow (23.0.0):64 ICBM 152 

Nonlinear Asymmetrical template version 2009c.65 

4.1.5. Functional data preprocessing 
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For each of the seven BOLD runs found per subject (across all tasks and sessions), the 

following preprocessing was performed. [The mention of “seven” BOLD runs here reflects other 

tasks collected as part of the aforementioned memory study.] First, a reference volume and its 

skull-stripped version were generated using a custom methodology of fMRIPrep. Head-motion 

parameters with respect to the BOLD reference (transformation matrices, and six corresponding 

rotation and translation parameters) are estimated before any spatiotemporal filtering using mcflirt 

(FSL 6.0.5.1, Jenkinson et al. 2002). BOLD runs were slice-time corrected to 0.972s (0.5 of slice 

acquisition range 0s-1.94s) using 3dTshift from AFNI.66 

The BOLD time series (including slice-timing correction when applied) were resampled 

onto their original, native space by applying the transforms to correct for head motion. These 

resampled BOLD time-series will be referred to as preprocessed BOLD in original space, or just 

preprocessed BOLD. The BOLD reference was then co-registered to the T1w reference using 

bbregister (FreeSurfer) which implements boundary-based registration.67 Co-registration was 

configured with six degrees of freedom.  

Several confounding time series were calculated based on the preprocessed BOLD: 

framewise displacement (FD), DVARS, and three region-wise global signals. FD was computed 

using two formulations following Power et al. (absolute sum of relative motions)68 and Jenkinson 

(relative root me square displacement between affines).69 FD and DVARS are calculated for each 

functional run, both using their implementations in Nipype (following the definitions by Power et 

al.68). The three global signals are extracted within the CSF, the WM, and the whole-brain masks. 

Principal components are estimated after high-pass filtering the preprocessed BOLD time series 

(using a discrete cosine filter with 128s cut-off) for the two CompCor variants: temporal 

(tCompCor) and anatomical (aCompCor). tCompCor components are then calculated from the top 

2% variable voxels within the brain mask. For aCompCor, three probabilistic masks (CSF, WM, 
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and combined CSF+WM) are generated in anatomical space. The implementation differs from that 

of Behzadi et al. in that instead of eroding the masks by two pixels on BOLD space, a mask of 

pixels that likely contain a volume fraction of GM is subtracted from the aCompCor masks. This 

mask is obtained by dilating a GM mask extracted from the FreeSurfer’s aseg segmentation, and it 

ensures components are not extracted from voxels containing a minimal fraction of GM. Finally, 

these masks are resampled into BOLD space and binarized by thresholding at 0.99 (as in the 

original implementation). Components are also calculated separately within the WM and CSF 

masks. For each CompCor decomposition, the k components with the largest singular values are 

retained, such that the retained components’ time series are sufficient to explain 50 percent of 

variance across the nuisance mask (CSF, WM, combined, or temporal). The remaining 

components are dropped from consideration.  

The head-motion estimates calculated in the correction step were also placed within the 

corresponding confounds file. The confound time series derived from head motion estimates and 

global signals were expanded with the inclusion of temporal derivatives and quadratic terms for 

each.70 Additional nuisance time series are calculated by means of principal components analysis 

of the signal found within a thin band (crown) of voxels around the edge of the brain, as proposed 

by Patriat, Reynolds, and Birn.71 The BOLD time series were resampled into standard space, 

generating a preprocessed BOLD run in MNI152NLin2009cAsym space. First, a reference volume 

and its skull-stripped version were generated using a custom methodology of fMRIPrep. All 

resamplings can be performed with a single interpolation step by composing all the pertinent 

transformations (i.e. head-motion transform matrices, susceptibility distortion correction when 

available, and co-registrations to anatomical and output spaces). Gridded (volumetric) resamplings 

were performed using antsApplyTransforms (ANTs), configured with Lanczos interpolation to 

minimize the smoothing effects of other kernels.72 Non-gridded (surface) resamplings were 
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performed using mri_vol2surf (FreeSurfer). Many internal operations of fMRIPrep use Nilearn 

0.9.1,73 mostly within the functional processing workflow. For more details of the pipeline, see the 

section corresponding to workflows in fMRIPrep’s documentation. 

4.1.6. Functional connectivity 

Calculating ROI-ROI functional connectivity required first measuring each voxel’s BOLD 

response in each trial. This was done using first-level general linear models with the Least Squares 

Separate approach by Mumford et al.,74 which involves fitting a separate regression for each trial. 

The regression included a boxcar signal spanning the trial’s object presentation period, and this 

regressor’s coefficient represents the trial’s BOLD response. The regression also included a 

boxcar signal covering the presentation time of all other stimuli (i.e., every other object and every 

scene). Additionally, the linear models included six translation/rotation regressors, three other 

covariates for head motion (FD, DVARS, and RSMD), and covariates for mean global, white-

matter, and cerebrospinal signals. 

The voxelwise measures of activity (beta coefficients) were organized and averaged in 

terms of the 210 neocortical ROIs of the Brainnetome Atlas (i.e., the cortex sans the 

hippocampus); the exact ROIs employed for the main analyses involving four anatomical 

quadrants are shown in Supplemental Figure S1. ROI-ROI functional connectivity was calculated 

independently for the high/medium/low PE conditions as the Pearson correlation between two 

vectors describing trial-wise activation estimates for each pair of ROIs (beta-series correlations).75 

Notably, the Brainnetome Atlas provides anatomical labels for each ROI. However, it does not 

provide an “ATL” label, which was defined here as the eight most anterior temporal gyral ROIs, 

as our group has previously done in semantic processing research.39 The data on ROI-ROI 

connectivity was used for the modularity analysis (described next) and for the classification-based 

analyses, which evaluated connectivity effects while assessing statistical significance with 
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multiple-comparison correction (methods and results provided in Supplemental Materials 2). The 

analyses were also conducted and reproduced using the Schaefer atlas (Supplemental Materials 7). 

4.1.7. Modularity 

Our goal in testing modularity and our approach contrasts typical modularity studies, 

which identify task-independent patterns by examining the connectivity averaged across 

conditions and participants. Here, modularity was tested using a beta matrix representing the effect 

of PE on each connection. For each edge, a regression was fit predicting connectivity strength, 

while treating PE as a continuous predictor (low = -1, medium = 0, high = +1). The regression was 

analogous to a paired t-test but with three points rather than two. That is, each participant 

contributed one sample per PE condition, and the regression included a dummy variable for each 

participant (66 participants = 65 subject variables). This was separately done for each edge in the 

connectome to construct the aforementioned beta matrix. Evaluating modularity required 

preparing binary matrices. Specifically, the beta matrix was filtered to only the 5% of edges with 

the most positive coefficients (high > low PE) or the 5% of edges with the most negative 

coefficients (low > high PE). The high-filtered and low-filtered binary matrices were then 

submitted to the Leiden algorithm – an optimized form of Louvain’s algorithm, which addresses 

the risk of disconnected communities and has become increasingly recommended.76  

4.2. Study 1B – Task-fMRI 

4.2.1. Participants and task design 

Analyses were conducted on 1,000 participant’s gambling task data from the S1200 HCP 

dataset (Mage = 28.7, 57% female, 43% male); this dataset is described by Barch et al.30 The task is 

based on the design by Delgado et al.77 with some changes to the timing procedures.30,78 In each 

trial, participants were shown a question mark and asked to press a button to make a choice (“2” or 

“3”) within 1.5 s. After making a choice, participants immediately saw a fixation cross for the rest 
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of the 1.5 s period. Then, the fixation continued for another 1 s. Afterward, participants saw an 

upward green arrow in 43.75% of trials (signifying a $1.00 reward) or a downward red arrow in 

43.75% of trials (signifying a $0.50 loss). In 12.5% of trials, participants encountered a screen 

indicating a neutral outcome (no gain or loss). Participants were told that their choice determined 

the outcome, but the choice actually had no effect, and each trial’s outcome was predetermined. 

The monetary difference between rewards/losses was meant to account for loss aversion causing 

losses to be perceived as worse than gains. Participants completed two runs of the task, each with 

32 trials separated into four blocks. 

4.2.2. Task design and modeling PE 

 To model PE, analyses defined a participant’s prediction in each trial as an exponential 

moving average, EMA[t] = α × outcome + (1 – α) × EMA[t – 1]. Outcomes were defined as +1, 

losses as -1, and neutral outcomes as 0. The learning rate was defined at 0.3, although testing 0.2 

or 0.5 showed that this does not change whether the Connectivity Direction x PE interaction effect 

is significant (still p < .0001). The prediction at the start of each run was defined as zero. PE was 

computed as the absolute difference between a trial’s outcome and the prediction based on 

previous trials.  

This continuous measure of PE was converted into binary high-PE and low-PE conditions 

to support the functional connectivity analyses. Binarization involved dividing trials based on the 

median PE. This median split was done separately for gain and loss trials to ensure they were in 

equal quantities across the high/low PE conditions. The neutral trials were omitted from the 

connectivity analysis as they were few in number. The first trial of the run was also omitted as 

there were no prior trials on which to base a meaningful prediction. Although a median split will 

lead to roughly equal numbers of trials in the high/low PE conditions, to ensure that these two had 

exactly the same number of trials (rather than possibly one condition having one or two more), 
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trials at the end of the task were omitted for balancing as needed. To validate these conditions and 

the binary split, participants’ reaction times were compared post-high-PE-loss and post-low-PE-

loss trials using a paired t-test, which was expected to show post-error slowing.28  

4.2.3. Imaging protocol and preprocessing 

Details on the imaging protocols are provided by Van Essen et al.29 Of note, the functional 

voxels were small (2 mm isotropic) and the temporal resolution was very fast (0.72 s TR time). 

The downloaded dataset had already been “minimally preprocessed” by the HCP, which included 

the removal of spatial artifacts/distortions, segmentation, within-subject registration, and 

normalization to a common brain template.79 Although the imaging and preprocessing protocols 

differ in Study 1B from Study 1A, this is acceptable given that the goal for Study 1B was not to be 

a precise replication. Additionally, adhering to the already-performed preprocessing for a public 

dataset benefits reproducibility. 

4.2.4. Functional connectivity 

Analysis of functional connectivity paralleled that of Study 1A but with two changes. First, 

single-trial beta estimates were computed for each trial using a Lease Squares All rather than a 

Least Squares Separate approach.74 The Study 1B dataset is much larger than the Study 1A 

dataset, and the Least Squares All approach is much less computationally intensive; preliminary 

analyses suggested that the produced beta values are largely similar. Second,  

each single-trial-beta regression model included the motion parameters provided by the HCP (six 

translation/rotation regressors and their derivatives) along with a covariate for mean global signal; 

note that the Study 1A preprocessing did not include motion derivatives, but this was done here 

because the HCP provided them, and we sought consistency with their standard procedures. 

Functional connectivity estimates were calculated separately for high-PE and low-PE conditions, 

for each pair among the 210 ROIs by using beta-series connectivity, as above.75 The contrast 
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matrix was correlated with that of Study 1A (Figure 2A). The Results section reports the 

correlation taken between the bottom triangle of a 46x46 matrix, wherein ROIs were averaged 

based on their Brainnetome label (e.g., averaging all L MFG ROIs to a single region); this is the 

matrix shown in Figures 2A & 3A. This averaging yields a more stable measure, given that 

individual signal within ROIs can vary wildly due to noise. As reported, the correlation was fairly 

strong (r = .27, p < .0001). If the correlation is instead taken with respect to the 210x210 matrix, 

there remains a clear correlation albeit a weaker one (r = .14, p < .0001). 

4.3. Study 2A – Resting-state-fMRI 

4.3.1. Preprocessing 

Rs-fMRI data were collected from the 66 participants from Study 1A with the same 

acquisition protocols. Also as above, the minimally preprocessed HCP data was used and the six 

motion covariates were regressed out. However, whereas the single-trial models for the task-fMRI 

analysis included a global-signal covariate, this was not done for the rs-fMRI analysis because 

global signal regression would strongly bias ROI-ROI and edge-edge correlations toward negative 

values.80,81 This would be an issue for the rs-fMRI analyses, as they focused on pure correlations 

rather than contrasts between conditions. Yet, without global signal regression, connectivity is 

strongly biased toward positive correlations.82 Hence, our resting-state analyses analyzed only a 

subset of the brain (OC, ATL, IPL, LPFC) and removed effects linked to connectivity with regions 

outside these subsets. This was done by data cleaning with temporal CompCor (see Section 4.1.5) 

and with other procedures detailed in the next subsection. 

4.3.2. Edge-edge correlations 

Our analysis of the rs-fMRI data focused on how connectivity strength fluctuates over time 

and how groups of edges fluctuate in sync or out of sync. Of the emerging techniques for 

addressing dynamic connectivity,83 we chose to employ time-varying connectivity and edge-edge 
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correlations.31,84,85 Whereas traditional connectivity studies have focused on the correlation 

between activation time series extracted from pairs of ROIs, this direction models connectivity 

itself as a time series and quantifies the relations between edges’ time series. Time-varying 

connectivity is modeled by decomposing the traditional Pearson correlation.31,84,85 That is, a 

Pearson correlation entails z-standardizing two vectors and taking the average of their element-

wise products. For time-varying connectivity, the element-wise products are calculated but not 

averaged, which means that the two input time series have created a new time series of the same 

length. For example, in the first volume, if OC activity is high and IPL connectivity is high, the 

OC-IPL connectivity in the first volume is said to be strong. After time-varying connectivity has 

been calculated for each edge in the connectome, the values were averaged in terms of the major 

anatomical quadrants shown in Figure 3A. For example, the OC-IPL entry represents the average 

across every possible pair of OC and IPL ROIs.  

In turn, Pearson correlations can be computed between pairs of the edge sets (e.g., 

correlating OC-IPL × OC-ATL). This edge-edge correlation represents how the two edges shift 

over time in sync (positive correlation) or out of sync (negative correlation). As mentioned in the 

prior subsection, these analyses required accounting for global signal. Preliminary tests showed 

that if global signal effects are unaccounted, this would promote a very positive correlation 

between edges, particularly for pairs of edges linked to the same ROI (i.e., global signal 

particularly enhances correlations between ROI1-ROI2 × ROI1-ROI3). Yet, if traditional global 

signal regression was done during preprocessing, this would induce a very negative correlation. 

Hence, to achieve an unbiased estimate, rather than measuring edge-edge connectivity as plain 

Pearson correlations, they were measured as partial correlations. These partial correlations 

essentially measured edge-edge fluctuations relative to each edge’s baseline correlation with the 

rest of the connectome. For this, analyses gathered the 144 neocortical ROIs outside the four 
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quadrants (non-OC, -IPL, -ATL, or -LPFC) and calculated the mean time-varying connectivity 

between each octant with these 144 ROIs (e.g., the mean time-varying connectivity between the L 

OC and the rest of the brain) (a octant is the unilateral version of a quadrant; see Figure 4). These 

eight measures of time-varying connectivity, one with each octant, were then partialled out of each 

edge-edge correlation. This partial correlation strategy is analogous to existing methods for 

unbiased global signal regression designed for classic ROI-ROI connectivity, which regress out 

signal from regions not analyzed. This approach appeared to be successful, given that in the 

correlation matrix shown in Figure 4, the mean correlation is r = .02, suggesting the absence of 

pressure toward positive or negative correlations. 

Edge-edge correlations were measured between each of the twelve connections shown in 

the Figure 4 cuboid to produce an edge-edge correlation matrix, on which modularity was tested. 

In this context, modules constitute sets of edges that are all strong in the same volumes (positive 

edge-edge correlations within modules). Modularity also is based on fluctuation between modules 

(negative correlations between modules). For the modularity analysis, the variant of Louvain’s 

algorithm was used as above but now, rather than just filtering the matrix to the 5% of strongest 

edges, the matrix was filtered to the 50% of strongest edges. This much more liberal approach was 

necessary as the edge-edge correlation matrix was much smaller (i.e., for a 12×12 matrix, using 

just 5% of edges would mean that most rows do not have a single preserved entry). 

4.4. Study 2B – Resting-state-fMRI 

Rs-fMRI data were used from the 1,000 HCP participants of Study 1B, which were 

collected using the same acquisition protocols and had already been submitted to the HCP 

minimal preprocessing pipeline. Preprocessing was meant to be similar to that of Study 2A, 

including regressing out the six motion parameters and using temporal CompCor but not global 
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signal regression. Afterward, the rs-fMRI data were submitted to the edge-edge modularity 

analysis described above for Study 2A, attempting to reproduce the original modules 

Study 2B also incorporated a new analysis, considering subsets of the four anatomical 

quadrants (visualized in Figure 5). Specifically, the analysis was predicated on repeatedly 

selecting a pair of bilateral ROIs (one left and its symmetric right) at random from the four 

quadrants. This selection yields eight ROIs, and the strength of the Study 1B task-fMRI effect and 

the strength of the rs-fMRI fluctuation were computed for each participant. The task-fMRI effect 

constituted the Connectivity Direction x PE interaction, (PAHigh PE – PALow PE) – (VDHigh PE – 

VDLow PE); these values refer to a single participant’s posterior-anterior (PA) and ventral-dorsal 

(VD) effects for a given condition. The rs-fMRI effect was computed using time time-varying (see 

above, Section 4.3.2), and the effect was defined as the mean of the TR-by-TR absolute difference 

between posterior-anterior and ventral-dorsal connectivity, E[|z(PA) – z(VD)|]; posterior-anterior 

and ventral-dorsal connectivity were each z-scored to ensure that the measure does not merely 

reflect overall variability in participants’ BOLD data. This absolute difference measure would 

later be used and discussed more prominently in Study 3, and the simulations (detailed in full in 

Supplemental Materials 6) demonstrate and provide intuition for why this quantity captures the 

degree of fluctuation between two states in resting-state fMRI data.  

The task-fMRI and rs-fMRI measures were computed for each participant and for each 

selection of eight ROIs (3,432 in total). They were then submitted to correlations and group-level 

analyses. Specifically, within-ROI-set (subject-by-subject) correlation was computed for each set 

of ROIs, and the correlation coefficients were likewise submitted to a one-sample t-test assessing 

whether the mean correlation significantly surpassed zero. In addition, a multilevel regression was 

performed which accounted for subjects’ overall task-resting association with respect to the full 

quadrants – i.e., to show that the results indeed reflect within-subject heterogeneity in the anatomy 
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of their PE networks rather than just their intensity. All 3.432 million data points (3,432 sets × 

1,000 participants) were submitted to the following multilevel regression: rest ~ 1 + task + (1 + 

task | ROI set) + (1 | subject). The use of random slopes for the ROI-set-level grouping makes this 

analogous to the t-test done on the correlations for each ROI set. The results report the 

significance of the task fixed effect, computed using the lmerTest R package.86 

4.5. Study 3 – Task-fMRI-EEG 

4.5.1. Participants and preprocessing 

The fMRI-EEG analyses used the public dataset provided by Telesford and colleagues33, 

which consists of fMRI and EEG data simultaneously recorded from 22 participants (Mage = 36.8 

[22-51], 50% male, although one participant’s data was unusable, see below). Participants 

generally completed two 10-minute resting-state scans. Participants also completed two 10-minute 

scans where they viewed the Inscapes video – an animation featuring shapes that slowly move and 

transform, which is meant to mirror resting-state conditions while discouraging movement and 

drowsiness.87 Data for one resting-state scan and one Inscapes scan were missing from five 

participants. Also, in our analyses, we encountered difficulties temporally aligning ten scans’ 

fMRI data and EEG data. Hence, the analyses were done using 68 scans, spread across 21 

participants. The dataset also includes scans where participants viewed movies with higher 

cognitive demands (e.g., Hollywood films), but these were not used. For ease of reproducibility, 

the analyses used the preprocessed version of the dataset provided by Telesford et al.33; see their 

report for a description of the acquisition and preprocessing procedures. Of note, the voxel size 

was 3.469 x 3.469 x 3.330 mm and the TR length was 2100 ms. The preprocessing by Telesford et 

al. notably included gradient artifact removal, which introduced discontinuities to the EEG data. 

For the fMRI data, we further preprocessed the data using temporal CompCor, as otherwise, as 
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was done for the resting-state Studies 2A and 2B and as without CompCor, the edges all strongly 

correlated. 

4.5.2. Time-frequency analysis 

The time-frequency analyses were done using electrode data recorded at 5000 Hz, which 

we downsampled to 250 Hz. The analyses first targeted five midline frontal electrodes (F3, F1, Fz, 

F2, F4; BioSemi64 layout), given that this frontal row is typically the focus of executive-function 

PE research on oscillations.27 Second, given the large size of the posterior-anterior/ventral-dorsal 

fMRI pattern, analyses were also done with the frontal and the frontocentral (FC3, FC1, FCz, FC2, 

FC4), central (C3, C1, Cz, C2, C4), centroparietal (CP3, CP1, CPz, CP2, CP4), and parietal (P3, 

P1, Pz, P2, P4) electrodes. As part of their preprocessing, Telesford et al.33 omitted some 

electrodes’ data (different across participants, M = 3.2 electrodes omitted). For the time-frequency 

analysis, complex Morlet seven-cycle wavelets were defined for each frequency band 0.5-50 Hz in 

100 linearly spaced 0.5 Hz steps. Each electrode’s time series was convolved using the wavelets, 

and the resulting spectrograms were averaged across electrodes for each participant. The 

discontinuities in the data generated during preprocessing, as mentioned above, create border 

artifacts in the time-frequency data, and the next section describes how these were dealt with. 

4.5.3. Fluctuation-power correlation 

Using the fMRI data, time-varying connectivity was calculated for each edge among the 

quadrant pairs illustrated earlier (e.g., edges between each of the OC ROIs with each of the ATL 

ROIs). Connectivity was averaged by quadrant pair as above, yielding overall time-varying 

measurements for OC-ATL, IPL-LPFC, OC-IPL, and ATL-LPFC connectivity. Partialling out 

edge-edge correlations with the rest of the brain, as done for the rs-fMRI studies, was not 

necessary here, as our focus was not on comparing positive vs. negative correlations while 

computing modularity. At each TR, the absolute difference (|PA – VD|) was calculated between 
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posterior-anterior connectivity (OC-ATL + IPL-LPFC) and ventral-dorsal connectivity (OC-IPL + 

ATL-LPFC). This time series of absolute differences represents how the intensity of the posterior-

anterior vs. ventral-dorsal fluctuations shifts over time. That is, fluctuation amplitude was 

considered equivalently high in TRs when (i) posterior-anterior connectivity was strong while 

ventral-dorsal was weak or (ii) ventral-dorsal connectivity was strong while posterior-anterior was 

weak. This measure is discussed in Supplemental Materials 6 and simulations are provided 

showing how this measure captures the amplitude of an underlying neural oscillator, even if the 

oscillator’s frequency outpaces fMRI’s temporal resolution. This absolute difference was 

correlated with oscillatory power at different frequency bands. The simulations in Supplemental 

Materials 6 also show why measuring such correlations shed light on the frequency underlying the 

fMRI connectivity fluctuations. 

In the EEG data, the measures of oscillatory power were organized by TR and averaged. 

For instance, at the fourth volume, the oscillatory power of a given frequency was averaged across 

6300-8399 ms. That is, the spectrograms’ temporal resolutions were reduced from 250 Hz to 1/2.1 

Hz. To account for EEG discontinuities introduced during preprocessing, and the potential for 

discontinuities to create border artifacts, TR intervals overlapping with discontinuous segments 

were identified along with their neighbors (e.g., if TR 4 overlaps with a discontinuous 500 ms 

segment, then TRs 3-5 are marked). Oscillatory power in these TRs was interpolated linearly (e.g., 

for TRs 3-5, interpolated using TRs 2 and 6). Finally, before oscillatory power was correlated with 

the connectivity-fluctuation differences, the interpolated spectrograms were convolved with 

respect to time using a hemodynamic response function. This accounts for the lag in the fMRI data 

between neural activation and the later BOLD response. After organization, the analysis simply 

consisted of measuring the Spearman correlation between the connectivity-fluctuation difference 

and oscillatory power at each frequency bin (e.g., correlate 1 Hz, 1.5 Hz, etc.). For each 
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participant, this correlation was measured for each of their four scans, then Fisher z-transformed, 

and averaged. Each participant’s mean correlation was submitted to a one-sample t-test assessing 

whether the correlation significantly surpassed zero. 
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Supplemental Materials 

1. Exact ROIs used 

 

Figure S1. Illustration of the ROIs used. The areas used for the four quadrants are shown here. 

For each area (IPL, IFG, etc.), the different colors distinguish among the different Brainnetome 

ROIs under this label assigned by the atlas. 

2. ROI-focused classification analysis 

2.1. Classification methods 

To identify the effects of prediction error (PE) on functional connectivity, for Study 1A, we 

began with a classifier-based approach, given the high statistical power that this affords.1–3 The 

analysis targeted the 210 neocortical ROIs from the Brainnetome Atlas. For each ROI, a support 

vector machine (SVM) was fit, making binary predictions and attempting to distinguish the high- 

and low-PE conditions. For a given ROI, its classifier used all of the connections to said ROI as 

features (Figure S2). The input dataset was organized such that each participant contributed two 

examples/observations to each ROI’s analysis: one high-PE example and one low-PE example. 

The examples’ edges were mean-centered within-subject by subtracting the edge’s average activity 

across the subject’s two examples; this makes the analysis analogous to a paired t-test. Altogether, 

the 66 participants’ data produced 132 examples. Each ROI’s SVM accuracy was assessed via 

group-2-fold cross-validation, averaged across 100 repetitions; see work on why this cross-

validation configuration maximizes sensitivity.4 
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Figure S2. Classifier-based analysis on the connectivity effects of prediction error. (A) 210 linear support 

vector machines (SVMs) were trained and tested, one for each ROI. The SVMs attempted to label examples 

as high or low prediction error. (B) Every ROI that yielded significant classifier accuracy is shown here, 

colored arbitrarily. (C) Post hoc-tests are shown based on the connections to occipital cortex (OC) and 

anterior temporal lobe (ATL) ROIs that yielded a significant classifier. Hot colors indicate stronger high-

PE connectivity and cool colors indicate stronger low-PE connectivity. SFG, superior frontal gyrus; MFG, 

middle frontal gyrus; IFG, inferior frontal gyrus; INS, insula; TG, temporal gyri (inferior/middle/superior). 

The statistical significance of each classifier’s testing accuracy was evaluated via 

permutation testing. For the permutations, the examples were shuffled within-subject to preserve 

the dataset’s intrinsic structure.5 Because each participant contributed two examples, shuffling 

amounted to randomly selecting participants to have their low-PE and high-PE labels flipped. For 

the permutation tests, the examples were submitted to the exact analyses described above, which 

included iteration across every ROI. This was done 100 times, and given that there were 210 

ROIs, permutation testing. yielded 21,000 measures of testing accuracy. The resulting distribution 

was used to assign each ROI’s classifier an uncorrected p-value (e.g., if the ROI achieved 99.5th 

percentile accuracy relative to the 21,000 estimates, it was assigned puncorrected = .005). The p-

values were then corrected in terms of a false-discovery rate.6 Significance (pFDR < .05) required at 

least 60% accuracy. 

2.2. Classification results 

Functional connectivity analysis followed the procedures described above. Several ROIs’ 

classifiers yielded above-chance accuracy, and these ROIs are shown in Figure S1B. In other 

words, these regions’ functional connections with the rest of the brain were modulated by PE. This 

classifier-based analysis establishes the statistical significance of PE-related connectivity changes 

linked to these brain areas. Yet, the nature of machine learning approaches requires post hoc 

analyses to draw clear neuroscientific interpretations. Figure S1C shows the beginning of this, 

presenting the results of paired t-tests associated with connections to occipital cortex (OC) and 

anterior temporal lobe (ATL) ROIs that each yielded a significant classifier However, the primary 

interpretation tests consist of the modularity analysis in the main text portion of Study 1A, and this 

analysis also serves to establish the PE signatures used for the rs-fMRI studies. 
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3. BOLD activation contrasts 

3.1. Study 1A 

The effect of PE on single-region BOLD signal was examined to establish a more complete 

description of the brain data. This was conducted using an ROI-based approach, analogous to that 

used for the main text connectivity analysis. For Study 1A (semantic PE), each participant’s 

BOLD signal in each ROI was averaged for each of the three conditions (low/medium/high PE). 

Each ROI was then analyzed independently using a linear regression that predicted BOLD based 

on a PE predictor (low = -1, medium = 0, high = +1). The regression included a dummy variable 

representing each subject’s identity, meaning that the analysis is akin to a paired t-test. This 

strategy produced the contrast shown in Figure S3A. Prominently, low PE upregulates lateral 

parietal and lateral temporal activity. High PE upregulates medial occipital, precuneus, and ATL 

activity. Several of these emerging areas overlap with the regions linked to functional connectivity 

changes in the main text, which is consistent with these regions being indeed involved in PE 

processing. Note that this data does not see any obvious signs that the main text conclusions on 

connectivity derive from effects that can be explained in terms of activity confined within 

individual regions (i.e., coactivation rather than connectivity).1 Rather, the main text PE 

connectivity results seem to indeed be best understood as PE influencing the relationship between 

regions. Indeed, when the main text regression of connectivity strength on Connectivity-Direction 

x PE interaction is performed while including each quadrant’s mean activity as a covariate (four 

covariates), the original interaction effect remains significant (β = .14, p < .001). 

 

 
1 It is also not clear whether connectivity “artifacts” induced by BOLD coactivation would even be mathematically 

possible. For papers focusing on just pairs of regions (e.g., the ATL and OC), then both regions’ BOLD rising in one 

condition can sometimes cause the condition to also be seen as increasing connectivity. However, we do not see any 

way that isolated BOLD effects could produce the four-quadrant pattern producing diverging posterior-anterior or 

ventral-dorsal effects. 

L RR L

(A) (B)
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Figure S3. Effects of prediction error on regional activation. (A) These t-maps correspond to the Study 1A 

analysis of PE’s effect on BOLD. Note that a liberal threshold is used (p < .05 [two-tailed]), as the focus is 

on being descriptive rather than drawing specific conclusions. The ROIs employed here use the 

Brainnetome atlas, as for the main text analysis, but to increase power at the expense of anatomical 

precision, ROIs were grouped based on their area label and averaged (e.g., the L IPL ROI’s signal here is 

based on the average of the six L IPL ROIs). (B) These t-maps correspond to the Study 1B analysis of PE’s 

effect on BOLD. Unlike for the Study 1A analysis, given that Study 1B had more participants, all 210 

neocortical Brainnetome ROIs were analyzed independently without area averaging. 

3.2. Study 1B 

BOLD analyses were also performed for Study 1B (gambling PE task), again based on 

ROIs but now simply submitting the low/high PE conditions’ data to a paired t-test as there are 

just two conditions (Figure S3B). Each of the patterns associated with Study 1A emerged again. 

However, there are also some new effects. In particular, the ventromedial prefrontal cortex stands 

out showing a strong link to high PE. This is presumably due to the region’s central role in 

processing outcomes and win/loss values.7 Additionally, although these regions are not clearly 

visible in Figure S3B, the effects of high > low PE are large in the ventral caudate (t[999] = 10.92, 

p < .0001), dorsal caudate (t[999] = 9.74, p < .0001), and ventral striatum (t[999] = 8.92,  

p < .0001); analyses combining the left and right ROIs. Overall, the Study 1A results being largely 

consistent with Study 1B but also partially divergent speaks to these two tasks engaging common 

PE mechanisms while also being complementary. 

4. Within-subject consistency of PE networks and fluctuations 

 The main text poses that, even at rest, participants’ brains are characterized by fluctuations 

between low PE and high PE network states. If this indeed reflects meaningful resting-state 

phenomena, then these network states and the fluctuations should be stable within individuals such 

that their neural processing is consistent across scans. This is particularly relevant to the Study 2B 

analyses, given that they are predicated on modeling heterogeneity in these networks across 

individuals. For Study 2B, participants completed each resting-state scan twice, and the present 

analyses focus on linking the pairs of scans from each participant. We evaluated stability in two 

ways: (i) whether within-subject heterogeneity in static functional connectivity is consistent across 

separate resting-state scans and (ii) whether within-subject heterogeneity in dynamic connectivity 

fluctuation is also consistent across separate resting-state scans.  

For the first analysis, we focused on stability in terms of the static properties of the 

presented networks – by “static,” we simply refer to a classic measure of functional connectivity 

across a full scan as the Pearson correlation between two ROI’s BOLD time series. We computed 

each participant’s functional connectome for each of their two resting-state scans. Then, we 

isolated the edges among one pair of adjacent quadrants (e.g., just IPL-LPFC edges). The 

consistency of the networks’ patterns across scans was first measured via within-subject edge-by-
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edge correlations between the edge strengths across the two scans.2 This was done for each 

participant, then averaged across participants. For all four pairs of quadrants, consistency was 

substantial (OC-IPL r = .72; ATL-LPFC r = .62; IPL-LPFC r = .83; OC-ATL r = .43). Similar 

patterns emerge if we perform the analogous across-subject consistency analysis – i.e., for each 

edge, examining whether participants with high connectivity strength in one scan tend to also 

display high strength in another scan (mean correlations: OC-IPL r = .51; ATL-LPFC r = .52; IPL-

LPFC r = .62; OC-ATL r = .35). To be clear, these results do not speak directly to the question of 

whether these resting-state patterns reflect PE, which is covered elsewhere. However, the results 

demonstrate the stability of functional connectivity measurements generally.  

For the second analysis, we focused on whether the dynamic properties of participants’ 

networks (the fluctuation patterns) are also stable across scans. Our analysis paralleled the 

conceptualization used in the main text where posterior-anterior and ventral-dorsal network states 

fluctuate between one another. These analyses are also similar to those of earlier work on edge-

edge correlations.8 We computed time-varying connectivity for each participant's connectome. 

Then, we focused on pairs of edges from adjacent quadrants associated with one overlapping ROI 

(e.g., one OC-ATL edge and one ATL-LPFC edge); analogous to how an edge was the minimum 

“unit” for analysis of the above stability analysis, here this minimum unit is a pair of edges with 

one common ROI.8 For a given participant and edge pair, the magnitude of fluctuation between the 

two edges was computed as in the main text: namely, as the mean absolute difference of two 

edges’ time-varying connectivity time series. For each participant, fluctuation magnitudes are 

computed for all possible sets of three ROIs among an anatomical quadrant triplet. Then, the 

within-subject triplet-by-triplet correlation is computed between a participant’s two scans, which 

is averaged across participants. As in the analysis of static connectivity, we find that fluctuation 

magnitude is a stable quantity across resting state scans (OC-IPL-LPFC r = .53; IPL-LPFC-ATL  

r = .65; LPFC-ATL-OC r = .53; ATL-OC-IPL r = .65). Likewise, there is high consistency in the 

analogous across-subject analysis like above (OC-IPL-LPFC r = .44; IPL-LPFC-ATL r = .42; 

LPFC-ATL-OC r = .46; ATL-OC-IPL r = .39). Thus, the network fluctuations targeted are stable 

and reflect reliable individual differences. 

5. Simulating the effects of oscillations on fMRI and EEG data 

The third study’s fMRI-EEG analyses are based on two premises: (1) Fluctuations between 

posterior-anterior (PA) and ventral-dorsal (VD) global states could produce the identified fMRI 

patterns, even if the oscillations outpace fMRI’s temporal resolution. (2) By correlating the PA vs. 

VD absolute differences with EEG oscillatory power at multiple frequencies, this can shed light on 

the frequency of the PA/VD fluctuations. To validate these premises and provide intuition for 

them, a simulation study was performed. 

 
2 This is equivalent to measuring the (within-subject, ROI-wise) statistical reliability of a measurement. The second 

set of values reported lower in the paragraph represent the across-subject statistical reliability. 
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This simulation conceptualizes the constant transitions between high-PE (ventral-dorsal) 

and low-PE (posterior-anterior) states as deriving from an oscillating mechanism (the sine wave in 

Figure S4A). The two premises above can be derived from the idea that this oscillator’s amplitude 

varies over time, and this variation changes more slowly than the oscillator’s frequency. For 

instance, suppose that a participant shifts between high-PE and low-PE states at 3 Hz. If the 

participant feels anxious or thinks about something important for 4 seconds, this may cause high-

amplitude 3 Hz oscillations for 4 seconds. To simulate these types of relatively slow changes, 

amplitude can be defined in terms of an autoregressive process (shown in Figure S4B):  

𝐴(𝑡 + 1) = |𝑟 ∗ 𝐴(𝑡) + √1 − 𝑟2 ∗  𝜎| 

𝜎 represents noise sampled from a normal distribution, drawn independently at each time point. 

The equation takes the absolute value of the autoregressive process because amplitude cannot be 

negative. As shown in Figure S4B, this process shifts over time, and the high amplitude period 

from 5-9 seconds can be interpreted as representing the acute 4-second period of anxiety 

mentioned above. Together, the product of the sine wave and amplitude produces an oscillator 

with varying intensity over time (Figure S4C): 

𝑥(𝑡) = 𝐴(𝑡) ∗  sin (𝑓𝑡) 

𝑓 is the oscillator’s frequency (𝑓 = 3 Hz for Figure S4). As this oscillator is meant to represent 

shifts between primarily PA or VD connectivity, high values of 𝑥(𝑡) correspond to strong PA 

connectivity (low-PE state) and low values of 𝑥(𝑡) correspond to strong VD connectivity (high-PE 

state) (or vice versa). Based on this signal, measured fMRI data (Figures S4D-F) and EEG time-

frequency data can be simulated (Figures S4G-I), as will be described. 
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Figure S4. Quantities used by the simulation. (A) One sine wave is used as an input for the simulation. 

(B) An autoregressive time series is also used as an input. (C) The product of the sine wave and 

autoregressive time series defined the simulated oscillator, which represents how fluctuations between 

states may vary in intensity over time. (D) Ventral-dorsal (VD) connectivity is defined as the sine-amplitude 

product, and posterior-anterior (PA) connectivity is defined as the inverse of this product. (E) Representing 

brain data recorded using fMRI, the VD and PA dots here are the average over the TR windows. No 

hemodynamic response function convolution was applied when making this figure for the sake of clarity but 

convolution was performed for the simulation results reported in the text. (F) Using the VD and PA dots, 

the |VD – PA| differences were computed. (G-I) The green lines represent the output of time-frequency 

decomposition done using the sine-amplitude product. The dots represent the power averaged for each TR 

window. The first TR window for 0.5 Hz power was removed as it was susceptible to edge artifacts. 

PA connectivity at each moment in time can be represented as simply the oscillator itself 

(𝑥), and VD connectivity can be represented as the inverse of the oscillator (−𝑥) (Figure S4D). In 

turn, the PA and VD measurements recorded using fMRI can be computed by averaging the data 

over 2 s windows and convolving with the hemodynamic response function (HRF) (the dots in 

Figure S4E represent the fMRI measurements at each 2 s TR): 

PA(𝑡′) = ℎ(1 − 𝑥′(𝑡′)  + 𝜎) 

VD(𝑡′) = ℎ(𝑥′(𝑡′) + 𝜎) 
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The apostrophe (′) is used to represent averaging/down-sampling to 2 s resolution. HRF 

convolution is represented using ℎ. Using these quantities, the PA and VD absolute difference can 

be computed as in the main text (Figure S4F): 

𝑑(𝑡′) = |𝑃𝐴(𝑡′) − 𝑉𝐷(𝑡′)| 

For the EEG analysis, the oscillator is decomposed into time-frequency data, representing 

oscillatory power at different frequencies using Morlet wavelets as described in the main text.  

W𝑓(𝑡) = 𝑀(𝑥(𝑡) + 𝜎) 

𝑀 represents transforming the oscillator signal into frequencies using Morlet wavelets. W𝑓 

represents the power time series recorded at a given frequency (𝑓). Figures S4G-I show the power 

time series computed for 0.5 Hz, 3 Hz, and 10 Hz power. Notice how the green line for 3 Hz 

power best mimics the initial amplitude series because the oscillator’s true frequency is 3 Hz. The 

subsequent steps describe how this can be derived from the data with fMRI-EEG correlations. 

To link the EEG data with the fMRI measurements, the two must be first aligned in terms 

of temporal resolution and hemodynamic effects must be accounted for. Hence, the time-frequency 

data was averaged in terms of 2 s windows and convolved with the HRF:  

W′′
𝑓(𝑡′) = ℎ(W′

𝑓(𝑡′)) 

Figures S4G-H represent this 2-second window averaging using the dark green dots (representing 

the average) above the light green lines (representing the moment-by-moment power time series). 

Then, the correlation between the PA-VD difference (𝑑) and oscillatory power (W′′) can 

be computed for different frequencies. One would expect that the correlation between the PA and 

VD absolute difference (𝑑) with oscillatory power (W′′) is strongest for the frequency that 

matches the one used to generate the oscillation, which is 3 Hz for the present example. 

Accordingly, in the visualization, notice how the PA and VD difference (Figure S4F) bears 

similarity to the 3 Hz power data (Figure S4H), evidenced by the TR4 and TR5 dots being 

elevated for both. 

To show this quantitatively, data was simulated using the above equations with the 

following parameters: 2 s TR for the fMRI data, sampling resolution of 100 Hz for the EEG data, 

amplitude autocorrelation of r = .95, and a true oscillation frequency of 3 Hz. The degree of noise 

was set to be fairly large (𝜎 was drawn from a normal distribution with a standard deviation of 

0.5). The length of the simulated time series was very long (100,000 seconds) to ensure that 

estimates are reliable, and to account for this simulation effectively just being of a single person 

whereas an actual study would examine multiple, as was indeed done for Study 3. 

Correlating neural data, fMRI measurements, and EEG measurements yields patterns 

supporting the initial two premises: (1) The PA and VD absolute difference, 𝑑(𝑡′), was correlated 

with the true oscillator amplitude, 𝐴(𝑡′), which yielded a positive association (r = .028, p < .0001). 
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Hence, a sub-second oscillator will influence fMRI data even though fMRI’s temporal resolution 

is slower than the oscillation frequency. (2) The PA and VD absolute difference was positively 

correlated with 3 Hz power (r = .052), and this correlation was stronger than with power at any 

other frequency, 1 such as 1 Hz (r = .005), 5 Hz (r = .01 Hz), or 10 Hz (r = .003). Note that this 

correlation peaking primarily with the power of the true frequency occurs regardless of the 

frequency level. For instance, when the true oscillation is set to 1, 10, or 30 Hz, the strongest 

correlations emerge between the PA and VD absolute difference and 1, 10, or 30 Hz power, 

respectively. 

Finally, note that for the sake of visualization, Figure 7A shows fMRI measures (PA and 

VD) sampled from the peaks and troughs of the oscillations. However, in reality, the fMRI data 

would sample from any point in the oscillation’s phase (e.g., sometimes near the midpoint, where 

there are virtually no PA and VD differences), and for frequencies above 0.5 Hz, fMRI would 

induce averaging. However, as the present simulations demonstrate, this does not invalidate the 

analyses but rather would just introduce noise. This may explain why the correlations are 

numerically small (e.g., r = .052 above and the correlations reported in Table 1 of the main text). 

6. Confirmatory analyses on the link between fluctuations and oscillations 

To ensure that the Study 3 correlations between oscillatory power and |PA - VD| indeed 

reflect connectivity fluctuations rather than overall strong or weak connectivity, we reperformed 

the Study 3 analysis while adding three alternative connectivity measures as covariates: (i) the 

signed difference between posterior-anterior and ventral-dorsal connectivity, (ii) the sum of 

posterior-anterior and ventral-dorsal connectivity, and (iii) the absolute value of the sum of 

posterior-anterior and ventral-dorsal connectivity. The within-subject Spearman correlations were 

replaced with linear regression of oscillatory power on fluctuation amplitude alongside the three 

covariates. The links between |PA - VD| and Delta/Theta remained significant (Delta: t[20] = 3.45, 

p = .003; Theta: t[20] = 5.12, p < .0001). Hence, these patterns confirm that the EEG oscillations 

were specifically tied to connectivity fluctuation amplitude.  

7. Schaefer atlas analysis 

The main-text analyses all use the Brainnetome atlas, but for the sake of robustness and 

generalizability, the analyses were also performed using the Schaefer atlas (400-ROI default 

variant).9 Because the Schaefer atlas defines its own area labels that differ from those of the 

Brainnetome atlas, we first needed to establish which Schaefer areas best correspond to those of 

the four quadrants based on the Brainnetome atlas. This was done by identifying which Schaefer 

areas had a majority of voxels overlapping with one of the four quadrants. For instance, in the 

Schaefer atlas, there exists a “L PFCl” label, and 88% of L PFCl voxels overlap with the 

Brainnetome L MFG or L IFG voxels. Thus, for the Schaefer analysis, L PFCl ROIs were used for 

the dorsal anterior quadrant. This strategy was used to develop a four-quadrant layout using the 

Schaefer ROIs, which was in turn used to reproduce the findings from the different main-text 

analyses. 
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7.1. Study 1 

Analyses were first done on the semantic PE data (Study 1A). Computing connectome-

wide PE regressions and modularity analysis again yields the two high PE and two low PE 

modules as before (Figure S5A; note that this is the one analysis that does not rely on the 

anatomically defined quadrants, here all 400 ROIs were used to define the connectome matrix). In 

addition, the Connectivity Direction x PE interaction remains significant (β [standardized] = .14, 
p = .009). Next, analyses were performed on the gambling PE data (Study 1B), and again, the 

Connectivity Direction x PE interaction remains significant (F[1, 999] = 8.47, p = .003). 

 

Figure S4. Replication using the Schaefer atlas. These figures correspond to main text (A) 

Figure 2C, (B) Figure 4C, and (C) Figure 5.  

7.2. Study 2 

 Analyses next reproduced the key elements of the dynamic connectivity modules shown in 

Studies 2A and 2B (Figures S5B & S5C). There are notably some differences in which modules 

the interhemispheric connections are assigned to, but the overall split across posterior-anterior and 

ventral-dorsal dynamic connectivity states remains the same. The original task-fMRI × rs-fMRI 

analysis for Study 2B was not possible for the Schaefer atlas given as the atlas is not bilaterally 

symmetric, precluding the selection of eight ROI sets. 
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7.3. Study 3 

Finally, fMRI-EEG analyses reproduced the patterns initially reported in main-text Table 1, 

where the strongest association between (fMRI) connectivity fluctuation magnitude and EEG 

oscillatory power is seen with Delta and Theta (Table S1)  

Table S1. Mean correlations between connectivity fluctuation and frontal oscillatory power. The table 

lists the Spearman correlations between fluctuation amplitude and the frontal power, averaged across an 

established frequency band (e.g., Delta is the average of 1 Hz power, 1.5 Hz power, … 3.5 Hz power). This 

is a reproduction of main-text Table 1 but based on using the Schaefer atlas to define the four quadrants.  

*, p < .05; **, p < .01; *** p < .0001. 

Frequency ranges Mean correlation  Cohen’s d 

Delta 1-3.5 Hz .051 [.033, .070]     1.20 *** 
Theta 4-7.5 Hz .043 [.026, .059]     1.12 *** 
Alpha 8-12.5 Hz .020 [.001, .039]     0.46 * 
Beta 13-29.5 Hz .029 [.010, .048]     0.65 * 

Gamma 30-50 Hz .037 [.016, .057]     0.77 ** 
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