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A B S T R A C T   

Functional connectivity studies increasingly turn to machine learning methods, which typically involve fitting a 
connectome-wide classifier, then conducting post hoc interpretation analyses to identify the neural correlates 
that best predict a dependent variable. However, this traditional analytic paradigm suffers from two main 
limitations. First, even if classifiers are perfectly accurate, interpretation analyses may not identify all the pat
terns expressed by a dependent variable. Second, even if classifiers are generalizable, the patterns implicated via 
interpretation analyses may not replicate. In other words, this traditional approach can yield effective classifiers 
while falling short of most neuroscientists’ goals: pinpointing the neural correlates of dependent variables. We 
propose a new framework for multivariate analysis, ConnSearch, which involves dividing the connectome into 
components (e.g., groups of highly connected regions) and fitting an independent model for each component (e. 
g., a support vector machine or a correlation-based model). Conclusions about the link between a dependent 
variable and the brain are based on which components yield predictive models rather than on interpretation 
analysis. We used working memory data from the Human Connectome Project (N = 50–250) to compare Con
nSearch with four existing connectome-wide classification/interpretation methods. For each approach, the 
models attempted to classify examples as being from the high-load or low-load conditions (binary labels). 
Relative to traditional methods, ConnSearch identified neural correlates that were more comprehensive, had 
greater consistency with the WM literature, and better replicated across datasets. Hence, ConnSearch is well- 
positioned to be an effective tool for functional connectivity research.   

1. Introduction 

Multivariate analyses using machine learning are becoming 
increasingly common in functional connectivity research. The tradi
tional machine learning analytic paradigm involves (a) fitting a 
connectome-wide classifier to predict a dependent variable, then (b) 
applying a post hoc interpretation tool to discern the features that best 
predict the dependent variable. The traditional paradigm is widely used 
and can produce accurate models (Chen et al., 2022; Eryilmaz et al., 
2020; Li et al., 2021b; Shen et al., 2017; Yoo et al., 2018). However, the 
present research asks whether it is necessarily the most effective way of 
applying machine learning to study the brain, particularly for studies on 
task-fMRI. We do not doubt that classifiers are often highly predictive 

and that interpretation analyses are generally successful in explaining 
what factors drive the predictions. Rather, we investigate whether the 
traditional paradigm is suitable for the more basic aim of most neuro
scientific research – namely, identifying the networks, connections, and 
regions sensitive to a task manipulation. The present research raises new 
questions about the traditional paradigm in this light and proposes a 
new tool that has the potential for broad usefulness in cognitive 
neuroscience research. 

We argue that the traditional paradigm faces two key limitations that 
limit its efficacy for most neuroscience studies. First, the interpretations 
generated via the traditional paradigm may not be comprehensive as 
interpretation analyses may find only a subset of the neural correlates 
expressed by a dependent variable. Second, the interpretations may not 
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be robust as the neural correlates identified via interpretation analyses 
may not replicate across studies (Tian and Zalesky, 2021). Along with 
investigating these drawbacks, we propose a new framework for 
multivariate analysis of functional connectivity data. The framework is 
designed for general-purpose use in task-fMRI research where the goal is 
to pinpoint a manipulation’s impact on the brain. 

Rather than fitting a connectome-wide classifier and interpreting it, 
the proposed framework involves fitting many models on different 
subsets of the connectome. Neuroscientific conclusions are drawn based 
on which models are predictive, not interpretation analyses. Thus, this 
procedure deviates from the traditional paradigm. Consistent with the 
aim of creating a general-purpose framework, the proposed method is 
flexible. Depending on researchers’ goals, subsets of the connectome can 
be modeled using classifiers or other techniques (e.g., correlational 
similarity). Our studies tested the efficacy of the proposed framework for 
these purposes and compared it to existing methods in terms of the two 
limitations raised above. We notably considered the framework’s effi
cacy for not just large studies but also smaller ones (N = 25–50), where 
machine learning methods are regularly thought to be less viable but 
where they may prove particularly useful given their sensitivity 

1.1. Existing multivariate analytic strategies 

Multivariate fMRI tools generally fall under one of the following two 
categories: (1) fitting models at the group level or (2) fitting models 
within-subject (Gilron et al., 2017; Wang et al., 2020a). Analyzing data 
with both group-level and subject-specific techniques is beneficial as 
these strategies may yield distinct but complementary results (Gilron 
et al., 2017; Wang et al., 2020a). For instance, group-level analysis could 
reveal that high working memory (WM) load is associated with 
increased connectivity within the default mode network (DMN) across 
the vast majority of participants. In contrast, subject-specific analysis 
could show that high WM load is linked to increased frontoparietal 
control network (FPCN) connectivity in some participants but decreased 
FPCN connectivity in other participants. Taken together, such results 
would suggest that both the DMN and FPCN are relevant to WM, but 
high load elicits homogeneous effects on the DMN yet heterogeneous 
effects on the FPCN. The analyses together provide a more complete 
perspective of how WM impacts connectivity. 

Group-level multivariate analysis often relies on machine learning. 
In the context of functional connectivity, this is typically done by fitting 
a classifier using the full connectome as input features. For instance, a 
task-based classifier could use connectome-spanning patterns to predict 
whether an example belongs to a high or low WM condition. Then, to 
interpret the classifier and identify the neural correlates supporting the 
prediction, post hoc analyses are performed that seek to find the most 
predictive connectivity edges and regions of interest (ROIs) (Eryilmaz 
et al., 2020; Li et al., 2021b; Shen et al., 2017; Yoo et al., 2018). This 
general paradigm can use different types of connectome-wide classifiers, 
such as support vector machines (SVMs) or ridge regressions. Interpre
tation analyses can also be done in different ways, such as with recursive 
feature elimination or post hoc frequentist tests. 

In contrast, subject-specific techniques involve fitting separate 
models for each participant. Subject-specific analyses are primarily used 
in research on brain activation, often applying a technique named 
searchlight multivoxel pattern analysis (MVPA), which can be used for 
both group-level and subject-specific analysis (Weaverdyck et al., 2020). 
This voxelwise method involves defining a 5–10 mm sphere around 
every voxel and then submitting the levels of activation within each 
sphere to a multivariate test (e.g., testing correlational similarity be
tween odd and even trials; Haxby et al., 2001; Walther et al., 2016). For 
functional connectivity research, subject-specific analyses may also 
prove insightful. Some connectome-wide models have been used for 
these purposes but primarily in the context of resting-state scans or for 
the analysis of data from a single task condition (see research on con
nectome fingerprints; Finn et al., 2015; Li et al., 2021a; Ravindra et al., 

2021). Far fewer studies have investigated subject-specific patterns in 
the connectivity changes elicited by task manipulations, although as we 
mentioned above, doing so can provide a more thorough picture of how 
a task influences connectivity. 

1.2. Limitations of existing approaches 

Connectome-wide classification and interpretation methods come 
with well-known limitations. For example, these methods are typically 
used with large datasets, containing data from hundreds, if not thou
sands, of participants (e.g., Dubois et al., 2018; Wang et al., 2020b). 
However, their effectiveness for moderately sized datasets – on the order 
of tens of participants, which is common for task-fMRI research – re
mains unclear. These methods also come with a risk of over
interpretation: For instance, an SVM or regression assigning positive 
weight to a feature does not necessarily speak to the directionality of the 
feature’s relationship with the dependent variable (Scheinost et al., 
2019). Although some interpretation techniques solve this dilemma, like 
the weight-transformation procedure by Haufe et al. (2014), other issues 
remain. 

The present report also puts forth two new possible concerns 
regarding traditional methods, specifically on the use of interpretation 
analysis. The first limitation is about comprehensiveness – i.e., whether 
the results of an interpretation analysis capture the complete range of 
neural correlates elicited by a given dependent variable. Traditional 
interpretation analyses may face challenges in this respect because they 
are designed to identify the features that best predict a dependent var
iable. However, this may lead them to miss moderately predictive ef
fects. Moderately predictive features are not necessarily less meaningful, 
but their signals may simply be noisier than, or collinear with, the 
stronger predictors. For example, a hypothetical classifier trained to 
predict working memory load may achieve 100% testing accuracy, 
while interpretation analyses show that the classifier primarily uses 
occipital lobe features to predict load. Such results ignore regions 
(frontal & parietal) and connections (FPCN & DMN) that are likewise 
involved in working memory but have signals that do not match the 
stability seen in the occipital lobe (Grill-Spector et al., 1999). Available 
evidence suggests that this can occur across a wide variety of tasks and 
even with sophisticated neural network classifiers (Wang et al., 2020b). 

The second limitation concerns the robustness of interpretations. 
Studies implementing connectome-wide classifiers generally use cross- 
validation and permutation-testing to evaluate the accuracy of classi
fiers and assess the statistical significance of accuracy. Significant ac
curacy establishes that the dependent variable is linked to functional 
connectivity in some way. However, significant accuracy does not imply 
that all of the features implicated by interpretation analysis genuinely 
predict the dependent variable. Consider a hypothetical dataset where 
only a single connectivity edge is genuinely related to the dependent 
variable. A classifier could, in principle, yield perfect accuracy via this 
predictive edge, while an interpretation analysis that seeks to identify 
the 1000 most predictive features would implicate 999 spurious edges. 
In real data, it is unlikely that only a single edge is a genuine predictor. 
Nonetheless, this concern is serious, given that the data associated with 
singular connectivity edges is often unreliable, which creates challenges 
in differentiating genuine vs. spurious predictors. The dilemma ulti
mately raises questions about the replicability of features implicated via 
interpretation analysis (Tian and Zalesky, 2021). 

1.3. The proposed approach 

The goal of this investigation was to test the efficacy of a novel 
framework for analyzing fMRI data: the “Connectome Searchlight” 
(ConnSearch) approach. The most similar existing method is the 
Connectivity-Based Psychometric Prediction approach by Wu et al. 
(2021). Their tool involved fitting a series of classifiers, wherein each 
classifier was trained using all connections to a given ROI as features. 
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The authors examined which classifiers best predicted a dependent 
variable. For example, the classifier based on connections to a supra
marginal gyrus ROI best predicted fluid intelligence, so the authors 
concluded that this region is relevant to intelligence. The approach by 
Wu et al. (2021) generates neuroscientific conclusions based on whether 
a model trained using a subset of the connectome achieved a high fit, 
rather than via post hoc interpretation analyses. ConnSearch follows the 
same premise, fitting models on subsets of the connectome and assessing 
which models achieve high fit. However, as we will show below, Con
nSearch incorporates innovations to increase sensitivity, permit usage 
even when datasets are limited, and open the door for subject-specific 
analyses. 

Analogously to how searchlight MVPA defines a sphere around every 
voxel, ConnSearch defines a network component “around” every ROI. 
One way to do this is by treating each ROI as a “Core/Seed” and 
grouping it with the ROIs to which it is most strongly connected. This 
yields a large number of overlapping components that span the con
nectome (Fig. 1A). Then, ConnSearch models each component’s data 
independently, to identify the components that significantly predict a 
dependent variable. Component analysis can be done in a variety of 
ways, much like how searchlight MVPA can be used for both group-level 
and subject-specific analysis. For instance, for each component, we can 
train a classifier based on data from one set of participants, then test 
classifier accuracy using data from other participants (group-level 
analysis; Fig. 1B). Alternatively, for each component, we can evaluate fit 
when modeling each participant’s data independently, wherein models 
use a participant’s data from one session to draw predictions about their 
data in another session (subject-specific analysis; Fig. 1C). In both cases, 
by examining which components give rise to statistically significant 
models, we can conclude which portions of the connectome are sensitive 
to the dependent variable.1 

By fitting and analyzing multiple independent models, ConnSearch is 
poised to avoid both limitations of the classification/interpretation 
paradigm noted earlier. (1) Regarding comprehensiveness, traditional 
interpretation analyses aim to find the most predictive features, but this 
can result in missing moderately predictive features. In contrast, Con
nSearch does not solely aim to discern which components are most 
predictive but also tests whether each component is predictive at all. 
Hence, ConnSearch may be better suited to identify both strongly and 
moderately predictive effects. (2) Regarding robustness, interpretation 
analyses may produce results that are a mix of genuine and spurious 
patterns because statistical significance is only tested for classifier ac
curacy and not for specific interpreted features. On the other hand, 
ConnSearch tests statistical significance at the level of the component, 
which allows robust conclusions on the link between a component and a 
dependent variable. In turn, this may enhance replicability. 

However, along with these possible advantages, ConnSearch comes 
with a risk that classifiers based on small subsets of the connectome may 
simply not be significantly predictive because the number of features is 
too small. Furthermore, because ConnSearch fits many models, this risk 
is amplified as the threshold for statistically significant accuracy must be 
raised to account for multiple hypothesis testing. To overcome these 
challenges, we focus on task-fMRI and classifiers that dissociate task 
conditions. Compared to the effects of individual differences, task ma
nipulations generally elicit much larger effects (Yarkoni, 2009), allow
ing more accurate classification. Additionally, our implementation of 
ConnSearch innovates in how cross-validation is performed with pro
cedures that enhance sensitivity in identifying significant classifiers (see 
MVPA research on this topic, Valente et al., 2021). 

1.4. The current study 

To assess the suitability of ConnSearch for neuroimaging research 
and to compare it with existing techniques, we analyzed WM task-fMRI 
data from the Human Connectome Project (HCP; Barch et al., 2013; Van 
Essen et al., 2013). This task was selected because WM relies on 
distributed processes involving multiple brain networks (D’Esposito and 
Postle, 2015), and WM is among the most studied aspects of cognition 
(Wieczorek et al., 2021), so there is abundant literature with which the 
ConnSearch results can be compared. The HCP WM task has a block 
design and is a variant of the N-back paradigm: Participants completed 
two sessions of the task, with each session including eight N-back blocks 
(27.5 s each). Four blocks were 2-back (high-load) and four blocks were 
0-back (low-load). To frame this dataset as a binary classification 
problem, each participant’s data were organized into examples, such 
that each participant produced two 2-back examples and two 0-back 
examples. The task conditions were used as binary labels for super
vised learning models. 

To evaluate ConnSearch’s utility as a general-purpose framework, we 
performed a series of analyses testing it for both group-level and subject- 
specific modeling. We focused on the comprehensiveness and robustness 
of its results. In terms of group-level modeling, we report several find
ings. First, we used ConnSearch to analyze the neural correlates of WM 
load using a limited dataset (N = 50) as well as a larger dataset (N =
250). Second, we compared the ConnSearch results to the findings 
generated by four different existing classification/interpretation 
methods, which consist of recursive feature elimination (Guyon et al., 
2002), neighborhood component feature selection (Eryilmaz et al., 
2020), connectome predictive modeling (Shen et al., 2017), and Haufe 
transformation (Chen et al., 2022; Haufe et al., 2014). Third, we 
assessed the replicability of the ConnSearch results across five 50-subject 
datasets and compared this to the replicability of the recursive feature 
elimination results. Finally, we also submitted the limited and large 
datasets to subject-specific ConnSearch to evaluate the flexibility of the 
proposed framework for multiple types of modeling. 

2. Methods 

2.1. Data and preprocessing 

2.1.1. Participants and WM task design 
Analyses were conducted on WM task data from the S1200 HCP 

dataset (57% female; Mage = 28.7 [22–37]; 11% left-handed). For a 
complete description of the task, see Barch et al. (2013). Analyses were 
done using three organizations of this dataset: (1) a sample of 50 par
ticipants, to evaluate the viability of ConnSearch when data are limited; 
(2) a sample of 250 participants, which was either analyzed in its en
tirety or split into five 50-participant groups to investigate replicability; 
(3) a sample of 45 test-retest participants, which was used for the 
analysis of reliability. This final sample constituted the complete HCP 
Test-Retest dataset, which was made up of all participants who 
completed the full WM protocols twice (four sessions total). This last 
sample was used for the reliability analysis because having more data 
per participant allowed us to better measure intraclass correlation. 
Across every dataset, N-back performance was generally high: For the 
2-back condition, the mean accuracy was 84.4% (SD = 9.4%), and for 
the 0-back condition, the mean accuracy was 89.9% (SD = 10.8%). 
Among the five 50-participant groups used for the replicability analysis, 
no pair of groups showed significant differences in either 2-back or 
0-back accuracy (ps ≥ 0.12); tested using Wilcoxon rank-sum tests 
because the data were left-skewed. These datasets are publicly available, 
and this research did not require review by the University of Illinois 
Institutional Review Board. 

2.1.2. HCP imaging protocol 
Functional MRI data for the WM task were collected using a 

1 We refer to these subsets of the connectome as “components” for consis
tency with the Network-Based Statistic approach by Zalesky, Fornito, and 
Bullmore (2010). 
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customized 3T Siemens Skyra scanner with a 32-channel head coil (Van 
Essen et al., 2013) and a multiband pulse sequence that permitted high 
temporal and spatial resolution (multiband factor = 8; TR = 720 ms; TE 
= 33 ms; flip angle = 52◦; 2 mm isotropic). High-resolution T1-weighted 
images were collected before functional scanning (TR = 2400 ms, TE =
2.14 ms; flip angle = 8◦; 0.7 mm isotropic). Before release, the HCP 
submitted the data to a “minimal preprocessing” pipeline, which 
removed spatial artifacts/distortions, produced segmentation data, 

registered the data within-subject, and normalized all participants’ data 
to a common brain template (Glasser et al., 2013). Slice timing correc
tion was not needed due to the short TR time. Further details on the 
scanning and preprocessing procedures are described by Van Essen et al. 
(2013) and Glasser et al. (2013). 

2.1.3. Further preprocessing 
Prior to analyses, the fMRI data were further preprocessed using the 

Fig. 1. Diagram of ConnSearch. A. Connectome matrices (264 × 264) are extracted to create examples, each with a binary label (e.g., 2-back vs. 0-back). Based on the 
average connectome, overlapping sets of ROIs (“network components”) are defined. Here, 264 components are created by using each ROI as a “Core” to generate a 
component – the component includes said ROI and the N-1 other ROIs to which it is most strongly connected (N is a flexible parameter). Each component is used to 
extract N × N matrices from the connectome examples. Each component’s data are then modeled individually. B. Group-level ConnSearch. For each component’s N ×
N-matrix examples, a classifier is trained to predict the labels (e.g., classify 2-back vs. 0-back), and its accuracy is tested. Permutation-testing is used to assess whether 
testing accuracy is statistically significant. C. Subject-specific ConnSearch. This analysis requires that each participant provides at least four examples, two for each 
label (Haxby et al., 2001). For each component and each participant, correlational similarity is calculated as the within-condition edge-by-edge correlation minus 
between-condition correlation (Fisher-z transformed Pearson correlations). The correlational similarity measurement for each participant is submitted to a 
one-sample t-test to assess whether the components show positive similarity across most people. Note that these two modeling branches are not meant to be exclusive, 
other types of component models are possible, but these are the two tested here. 
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Connectivity Toolbox (CONN; Whitfield-Gabrieli and Nieto-Castanon, 
2012). Denoising was carried out with linear regression and removed 
physiological and other sources of noise via the inclusion of the 
following temporal covariates: First, using the anatomical CompCor 
method (Behzadi et al., 2007), as implemented in CONN, noise ROIs 
were created for each participant based on white matter and cerebro
spinal fluid masks derived during segmentation and eroded by 1 voxel to 
minimize partial volume effects. For each ROI, five principal compo
nents representing its signal were added to the denoising regression 
model as temporal covariates. Second, twelve motion parameters (3 
rotation, 3 translation, and first-order temporal derivatives) were added. 
Third, finite impulse response (FIR) covariates were also added to ensure 
that analyses targeted functional connectivity and not co-activation 
(Cole et al., 2019). One hundred twelve FIR covariates were added in 
total, which covered the length of each block (38 volumes) plus 18 
additional volumes to account for the likely duration of the HRF. 
Separate covariates were used for each condition, hence 112 = (38 +
18) × 2. Fourth and finally, for each participant, a variable number of 
regressors were included to account for “outlier volumes”. These vol
umes were identified using Artifact Detection Tools (www.nitrc.org/pro 
jects/_artifact_detect/), as scans exceeding 0.5 mm in composite motion 
(combination of translational and rotational displacements) and/or 
showing activation 3 standard deviations above or below the global 
mean signal. For each outlier volume, a “scrubbing” covariate was 
added, which consisted of 1 for the outlier volume and 0 s for all the 
other volumes. After regression, high-pass filtering was performed (>
0.01 Hz) to remove slow fluctuations while maintaining task-related 
changes. 

After preprocessing, ROI-to-ROI connectivity was calculated using 
HRF-weighted Pearson correlations between time series extracted from 
ROIs. To ensure ConnSearch is effective regardless of the atlas employed, 
connectivity matrices were calculated using the 264-ROI atlas by Power 
et al. (2011) and the 1000-ROI variant of the atlas by Schaefer et al. 
(2018). The Power et al. (2011) atlas is specified by 264 cortical and 
subcortical coordinates, established from both resting-state and 
task-based data. For each coordinate, an ROI was created as a 5 mm 
radius sphere centered at the coordinate. The Power et al. (2011) atlas 
was used for the analyses of the 50-participant datasets and the 
45-participant Test-Retest dataset. The Schaefer et al. (2018) atlas 
specifies 1000 ROIs and was developed based on resting-state data. This 
atlas was used for the analyses of the 250-participant dataset, where the 
increased density of ROIs, together with the larger sample size, allows 
fine-grain modeling of component data and precisely localizing effects 
of the task. 

2.2. The ConnSearch approach 

2.2.1. Overview 
Here, we provide a broad overview of the analysis, and later sub

sections provide details: Examples were labeled 2-back or 0-back based 
on the task condition from which they originated. The task conditions 
served as binary labels (Y), which the models sought to predict. Each 
participant completed both conditions twice and thus generated two 
examples of each label. Each example is associated with a functional 
connectome matrix (XM×M), where M is 264 or 1000 depending on the 
atlas tested. Based on the M ROIs, ConnSearch defines M overlapping 
network components. Each network component (Cm) is a set of N ROIs, 
defined as ROI m and the N − 1 ROIs most strongly connected to ROI m. 
Each network component was used to extract an N × N matrix (XCmCm ) 
from each example’s connectome matrix. 

Each component’s data were submitted to independent models – i.e., 
one model was fit for component 0, one model for component 1, etc. 
Modeling fell under one of two distinct tracks, including group-level 
modeling and subject-specific modeling. (1) For group-level modeling, 
M SVMs were trained/tested, one per component. Each SVM predicted 
the labels (Y) based on data from a given component (XCmCm ). Group- 

level ConnSearch aims to identify which components give rise to sig
nificant classifiers. For each classifier, the accuracy threshold required 
for statistical significance was defined based on permutation-testing. (2) 
For subject-specific modeling, correlational similarity was used to test 
for subject-specific effects (Haxby et al., 2001). For a given participant, 
correlational similarity depends on the correlation between the partic
ipant’s two examples of the same label minus the correlation between 
their examples of opposite labels. Applying this analysis separately for 
each component generates M measures of correlational similarity per 
participant. Subject-specific ConnSearch is to identify components that 
show positive correlational similarity across most participants. For each 
component, the significance of participants’ correlational similarity was 
assessed by submitting every participant’s value to a one-sample t-test. 

2.2.2. Defining the network components 
After extracting connectome matrices, the ROIs were organized into 

partially overlapping sets, which we refer to as “network components.” A 
network component is defined for every ROI of the atlas. Each ROI’s 
network component includes the ROI itself (the “Core ROI”) and the N −

1 other ROIs with which it was most strongly connected (Fig. 2). Con
nectivity strength was assessed as the average connectivity matrix across 
both conditions and all participants. Defining components based on 
strong connectivity is motivated by network research defining commu
nities of nodes based on their strong connections (Sporns, 2013). 
Although this strategy will exclude analysis of weak connections and 
thus may miss some neural correlates, inclusion of these connections is 
still possible by adjusting how components are defined (see Discussion 
4.3). 

Notably, pooling data from all participants when defining compo
nents technically means that the testing set “contaminates” the training. 
Nonetheless, it enables clearer results without compromising the anal
ysis. Because group-level modeling involves cross-validation, doing the 
alternative – defining components solely on training data – would 
require defining a unique set of components for every cross-validation 
fold. This would create challenges in interpreting significant compo
nents. Additionally, a priori there is no clear reason to suspect why such 
contamination would inflate classifier accuracy, but even if it did, such 
inflation would not influence the results because significance was 
established using a permutation-testing approach. Accordingly, pre
liminary analyses using group-level ConnSearch and the limited (N = 50) 
dataset, showed that both approaches yield the same number of signif
icant components (ten). 

The number of ROIs in each component (N) is a flexible parameter 
that is specified before analysis. The main text focuses on results from 
where N = 16, but to test for consistency, the primary analyses were 
carried out multiple times, using 16, 24, or 32 ROIs. Overall, each ROI 
setting supported similar conclusions. However, as will be shown in the 
Results, larger sizes increase sensitivity but decrease localization – i.e., 
for larger components, more will be found to be significant but, for each, 
less can be said about specific ROIs and edges. 

After defining network components, data for each component were 
extracted from the main connectome matrix. Analyses proceeded by 
either building group-level (Section 2.2.3) or subject-specific models 
(Section 2.2.4). To report the significant components, figures and tables 
are provided, which organize the components’ ROIs in terms of canon
ical networks, as labeled by the Yeo et al. (2011) network atlas. 
Subcortical ROIs not assigned to any network were labeled “Uncertain.” 
Supplemental Table S1 lists all Power et al. (2011) coordinates with 
their Yeo et al. (2011) labels. 

2.2.3. Group-level ConnSearch 
For group-level ConnSearch, an independent SVM was fit for each 

component, using its connectivity edges as features and the task con
ditions as labels (0-back vs. 2-back). Component data are symmetric 
matrices, and thus the bottom triangles were extracted and flattened 
into vectors before analysis. Analyses used SVMs with linear kernels 
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because available evidence shows their efficacy in connectivity-based 
classification (e.g., linear SVMs perform better than radial SVMs or 
Linear Discriminant Analyses; Plitt et al., 2015). The SVM regularization 
parameter was left at the default (C = 1), as no neuroscientific research 
has found support for a specific setting. 

Each SVM’s accuracy was assessed via 10-repeated 5-fold cross- 
validation. This procedure involves repeating 5-fold cross-validation 
ten times and averaging across the repetitions to generate an overall 
assessment of testing accuracy. Participants were organized by fold and, 
for each fold, no participants were split with some examples in the 
training set and some in the testing set. Notably, the use of repetitions for 
cross-validation is not yet standard in neuroimaging research, where 
unrepeated cross-validation is more common. Nonetheless, averaging 
across 10-repeats increases statistical power (see Supplemental Methods 
1.1 and for a related demonstration, see Valente et al., 2021). For each 
SVM, accuracy was compared to a threshold of statistical significance, 
which was established via permutation-testing and which accounts for 
multiple comparisons at a family-wise error level (Supplemental 
Methods 1.2). For a 50-participant dataset with 264 components, p < .05 
corresponds to over 63% accuracy, and for a 250-participant dataset 
with 1000 components, p < .05 corresponds to over 56% accuracy; note 
that although 56% accuracy may not intuitively seem far above chance, 
it corresponds to correct classification 1200 more times than incorrect 
classification. 

2.2.4. Subject-specific ConnSearch 
Subject-specific ConnSearch is based on correlational similarity 

(Haxby et al., 2001; Kriegeskorte et al., 2008; Weaverdyck et al., 2020). 
To measure correlational similarity, component data matrices are flat
tened into vectors, as with group-level ConnSearch. As noted, each 
participant provides four examples for a given component (2 conditions 
x 2 sessions), x0bk

1 , x0bk
2 , x2bk

1 , and x2bk
2 . Pearson correlations were 

assessed between pairs of examples from different sessions, and each 
correlation was Fisher Z-transformed. Correlational similarity (f) was 
calculated as within-condition similarity minus between-condition 
similarity, 

fwithin = Z
(
x0bk

1 , x0bk
2

)
+ Z

(
x2bk

1 , x2bk
2

)

fbetween = Z
(
x0bk

1 , x2bk
2

)
+ Z

(
x2bk

1 , x0bk
2

)

f = fwithin − fbetween,

where Z represents a Fisher-Z-transformed correlation. The above 
equations were applied independently for each component and partici
pant. High correlational similarity for a participant’s data indicates that, 
across the two sessions, connectivity data were similar within-condition 
and distinct between-condition. For each component, one-sample t-tests 
were used to assess whether most participants showed a substantial 

correlational similarity effect for that component. T-tests were corrected 
for multiple hypotheses using Holm’s method with Šidák correction 
(Abdi, 2007) – a family-wise error approach similar to Bonferroni 
correction. To confirm that significant results were rooted in 
subject-specific patterns, correlational similarity was also measured 
after subtracting group-average 2-back vs. 0-back effects on an 
edge-by-edge basis (Supplemental Methods 1.3). This technique, which 
is analogous to “cocktail-blank removal” in MVPA research (Bonhoeffer 
and Grinvald, 1993; Walther et al., 2016), omits all group-level patterns 
from the data prior to measuring correlations, meaning that any sub
sequent results must be rooted in neural patterns unique to each 
participant. 

2.3. Comparisons with other analytic methods 

The group-level ConnSearch results were compared to those of four 
alternative strategies, applied to the same 50-participant and 250-partic
ipant datasets. Each alternative method followed the traditional ma
chine learning approach, whereby a classifier was fit using the whole 
connectome as features, then a post hoc interpretation analysis was 
conducted to identify the most predictive edges. The four strategies used 
different feature selection techniques for finding predictive features; 
note, feature selection was used here solely for post hoc interpretation 
and not to enhance classifier accuracy. Supplemental Methods 1.4 also 
details frequentist approaches that were implemented for comparison, 
including t-tests and Network-Based Statistic analysis (results for a 50- 
participant dataset provided in Supplemental Results 2.1; Zalesky 
et al., 2010). 

The first connectome-wide classification and interpretation 
approach used recursive feature elimination (Guyon et al., 2002), which 
involved (a) fitting a linear SVM using the whole connectome as fea
tures, (b) identifying the 0.1% of features with the lowest magnitude 
weights, and (c) eliminating those edges. This was performed recur
sively until 1000 edges were achieved; preliminary analyses tested 
alternative selection thresholds (500–4000 edges), but these all yielded 
similar interpretations (no shifts in significance for patterns reported in 
the Results, Table 2). The second method used neighborhood component 
feature selection (Yang et al., 2012), which involved identifying the edges 
that showed the smallest distance among examples within-condition and 
the largest distance among examples between-condition. Using this 
strategy, 397 features were identified as most predictive. This 
397-feature cutoff was used because it provides high and stable accuracy 
(following the procedure by Eryilmaz et al., 2020). This second method 
could only be used for the analysis of the 50-participant dataset, as it was 
too computationally intensive for the 250-participant dataset. The third 
method was connectome predictive modeling (Shen et al., 2017), which 
involved submitting every edge to a frequentist test (t-test comparing 
0-back vs. 2-back), then filtering edges to only those where uncorrected 

Fig. 2. Procedure for defining overlapping components. This diagram shows how a hypothetical 4-ROI connectome could be divided into four overlapping size-3 
components. For the connectome graph, each edge’s line width represents connectivity strength. 
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p < .05; preliminary analyses tested other cutoffs (p < .001–0.10), but 
these all yielded similar interpretations. The fourth method used Haufe 
transformation (Chen et al., 2022; Haufe et al., 2014), which involved 
fitting a kernel ridge regression, then transforming the coefficient 
weights with the technique by Haufe et al. (2014). Unlike the first three 
methods, this final technique yields continuous measures of pre
dictiveness for each edge. 

For each method, its sets of most predictive edges were organized in 
terms of which Yeo et al. (2011) network their corresponding ROIs 
belonged to (e.g., an edge could be labeled FPCN-DMN). These effects 
are plotted for each method, showing how some pairs of networks had a 
greater number of edges deemed highly predictive. Contrasting most 
studies using these methods, the present research also tested the statis
tical significance of interpretations: Analyses examined whether the 
number of highly predictive edges between a given pair of networks 
significantly surpassed what would be expected by chance if the edges 
were uniformly distributed; p-values were assessed via 
permutation-testing. The Haufe results could not be used for testing 
significance, as its results are continuous and do not lay out a specific set 
of highly predictive edges. 

2.4. Reliability and replicability analyses 

ConnSearch and the other methods were compared in terms of both 
reliability and the replicability of the brain regions they implicate (i.e., 
the replicability of interpretations). Paralleling earlier HCP reliability 
research (Elliott et al., 2020), reliability was quantified for significant 
group-level components as the mixed-effects intraclass correlation (ICC) 
– i.e., the extent that a participant’s connectivity within the first run 
predicted their connectivity in the second run, while task-related effects 
were controlled. Component ICC was compared to the ICC associated 
with individual edges. Further details on measuring reliability are pro
vided in Supplemental Methods 1.5. The results and conclusions on 
reliability apply to both group-level and subject-specific ConnSearch. 

Replicability was assessed by first organizing the HCP WM data into 
five independent datasets (N = 50 each). Then, ConnSearch was per
formed using each dataset, and overlap was measured among each 
dataset’s results. Overlap was measured using the Dice Similarity Co
efficient (DSC) in terms of the ROIs that made up each dataset’s signif
icant components (Dice, 1945; Maitra, 2010; Sorensen, 1948). 
Substantial overlap would mean that the neuroscientific conclusions 
based on one dataset would similarly be identified in another dataset. 
Overlap was measured between each pair of datasets and then averaged 
across all possible pairs. Replicability was independently measured for 
group-level and subject-specific ConnSearch. 

For comparison purposes, the replicability was also assessed based 
on interpretation using the first connectome-wide method (recursive 
feature elimination). The method was likewise used to analyze five 
datasets. For each dataset, recursive feature elimination identified 1000 
edges as the most predictive. Based on these edges, ROIs were defined as 
“significant” if they were associated with eight or more edges included 
in the pool of 1000. Replicability was measured based on the overlap of 
“significant” ROIs between datasets, again calculated using the Dice 
Similarity Coefficient. The eight-edge threshold was chosen because it 
drives the number of “significant” recursive feature elimination ROIs 
(105 on average) to roughly equal the number of “significant” Con
nSearch ROIs (102 on average). The eight-edge threshold is not mean
ingful beyond this specific comparison. 

Note that neither ConnSearch nor recursive feature elimination 
formally tests statistical significance in terms of individual ROIs. 
Instead, ConnSearch tests statistical significance for components’ 
models, and our connectome-wide analyses test significance in terms of 
edges. By defining “significant” ROIs, this approach created a “common 
currency”, which allowed the different methods’ replicabilities to be 
compared even though their outputs are fundamentally different. 

2.5. Software 

The nilearn package was used for the glass brain visualizations 
(Abraham et al., 2014). The new code has been released so that other 
researchers can apply ConnSearch to their own datasets or modify it (htt 
ps://github.com/paulcbogdan/ConnSearch). The code notably contains 
tools for alternative component definitions (e.g., proximity), 
permutation-testing, and creating tables. The visualization code used for 
the chord diagrams was released as a separate package (https://github. 
com/paulcbogdan/NiChord). 

3. Results 

3.1. Limited sample size 

3.1.1. Group-level ConnSearch 
Consistent with our aim to develop a tool that is sensitive and pro

vides a comprehensive perspective on the effects of a task, group-level 
ConnSearch identified ten significant network components, even under 
a limited sample size (N = 50). These ten significant components span 
canonical resting-state networks and provide a look into multiple as
pects regarding the effects of working memory load (Fig. 3 & Table 1). 
For example, two significant components were primarily composed of 
parietal and occipital ROIs, which are linked to visual and attentional 
processing networks (Entries #1 & #2). Significant components also 
arose linked to prefrontal ROIs and higher-order networks, such as the 
FPCN and DMN (e.g., Entries #4 & #10). Finally, several components 
spanned both visual/attentional and frontal areas (e.g., Entries #8 & 
#9), pointing to the collaboration between these processes. For 
robustness, this analysis was also performed using 24-sized and 32-sized 
components, which yielded significant results of similar topography 
(Supplemental Tables S2 & S3). Overall, these findings demonstrate that 
ConnSearch can generate significant results, even when (1) sample sizes 
are limited,2 (2) classifiers use only small fractions of the connectome, 
fewer than 0.4% of all edges, and (3) strict accuracy thresholds that 
correct for multiple hypotheses are employed. 

3.1.2. Comparison to connectome-wide interpretation methods 
Testing alternative methods showed they were less comprehensive in 

identifying the breadth of neural correlates elicited WM load compared 
to ConnSearch. For this analysis, we used the same 50-participant dataset 
as above and first confirmed that the SVM and ridge regression were 
successful classifiers. Indeed, both yielded high accuracy (over 80%). 
Then, four approaches to post hoc interpretation were tested, and the 
four methods yielded mostly similar results: Every method heavily 
implicated edges linked to the Visual Network and Dorsal Attention 
Network (DAN), which were associated with posterior ROIs (Fig. 4). 
However, the alternative methods were more limited in identifying 
patterns beyond these networks. Statistically, only edges linked to the 
Visual Network and DAN were deemed most predictive at frequencies 
that significantly surpassed chance level (Table 2). This contrasts Con
nSearch, which delineated not just posterior components but also FPCN- 
FPCN, FPCN-DMN, and DMN-DMN components that included frontal 
ROIs. These results provide evidence for our hypothesis on the 
comprehensiveness of ConnSearch, in terms of more fully capturing the 
effects of a dependent variable. These different paradigms will be further 

2 Our primary focus was on 50 participant datasets, as after accounting for 
the short HCP scan times (10 minutes per participant), they are most repre
sentative of typical fMRI studies, usually involving 20-25 participants. How
ever, we also tested ConnSearch using yet smaller HCP datasets (N = 25). This 
analysis used large component sizes (32 ROIs) to compensate for the limited 
amount of data. Even at this very small sample size, ConnSearch identified 14 
significant components, which included ones that can be considered occipital, 
occipitoparietal, or frontoparietal. 
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Fig. 3. Significant network components identified by group-level ConnSearch. Two components that are significant at N = 50 are shown here and titled by their cor
responding entry number in Table 1. Edges are colored based on the results of paired t-tests, rather than SVM weights, as such weights cannot be compared across 
models. The network names were assigned based on the labels of the Yeo et al. (2011) network atlas. VAN, Ventral attention network; DAN, Dorsal attention network; 
SM, Somatomotor network; Li., Limbic network; Unce., Uncertain (subcortical). 

Table 1 
Significant network components identified by group-level ConnSearch. Each row corresponds to a significant component. The three columns under “Core ROI Details” 
describe the properties of the Core ROI used to create the component, including its region, Brodmann Area (BA), and its “ROI #” (see Supplemental Table S1 for details 
on each ROI #). The “Component Network Composition” columns represent the breakdown of each significant component’s ROIs. Rows are ordered from posterior 
(#1) to anterior (#10) in terms of the location of their Core ROI. Due to rounding, some rows sum to 99% rather than 100%. L, Left; R, Right; Cun, Cuneus; SPL, 
Superior parietal lobule; ITG, Inferior temporal gyrus; STG, Superior temporal gyrus; PCu, Precuneus; FuG, Fusiform gyrus; PrG, Precentral gyrus; MFG, Middle frontal 
gyrus.   

Core ROI Details  Network Component Composition 

Entry # Region BA ROI # Accuracy DAN DMN FPCN Limbic SM VAN Visual 
1 L Cun 7 165 64.3% 12% 6% 0% 0% 0% 6% 75% 
2 R SPL 7 255 63.4% 44% 0% 12% 0% 0% 0% 44% 
3 L ITG 20 3 64.2% 12% 19% 25% 0% 6% 0% 38% 
4 R STG 40 234 63.9% 12% 25% 31% 0% 12% 19% 0% 
5 R PCu 7 202 64.2% 6% 0% 0% 0% 50% 19% 12% 
6 L FuG 20 247 66.9% 25% 6% 25% 6% 0% 0% 38% 
7 R PrG 6 263 65.8% 50% 0% 31% 0% 0% 12% 6% 
8 L PrG 6 173 66.0% 25% 6% 56% 0% 6% 6% 6% 
9 L MFG 9 186 66.1% 25% 0% 56% 0% 0% 0% 19% 
10 R MFG 6 192 64.8% 19% 12% 69% 0% 0% 0% 0%  

Fig. 4. Results of four connectome-wide classification and feature selection methods. Analysis used the limited (N = 50) dataset parecellated using the Power et al. (2011) 
atlas. For each method’s results, the glass brains indicate which ROIs were linked to the most predictive edges, whereby larger-sized dots indicate that a given ROI 
was associated with more predictive edges. The chord diagrams indicate which networks were associated with the most predictive edges, whereby thicker arcs 
indicate that a given pair of networks is associated with many predictive edges. 
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compared, next, using a larger dataset. 

3.2. Large sample size 

3.2.1. Group-level ConnSearch 
Submitting the larger dataset (N = 250) parcellated with the 

Schaefer et al. (2018) atlas to ConnSearch allowed it to map the topog
raphy of connectivity patterns elicited by WM load with precision 
(Fig. 5). This precision is evident in two notable patterns that arose. 
First, in the posterior cortex, the 250-participant analysis pointed to two 
clusters: one early visual cluster and one posterior parietal cluster, 
which may reflect dissociable visual and attentional processing, 
respectively (Weber et al., 2017). Second, in the prefrontal cortex (PFC), 
a dorsolateral PFC cluster emerged and showed an anterior-posterior 

gradient, which may reflect the hierarchical organization of process
ing (Jung et al., 2022; Nee and D’Esposito, 2016). Neither of these 
specific patterns emerged in the analysis of the limited dataset. Thus, at 
a larger sample size, ConnSearch yielded sharper localizations on the 
effects of WM load. Although it cannot be said for certain that these 
findings are “correct” as the “ground truth” is unknown, the results are 
consistent with existing WM research (see Discussion 4.1). It is also 
worth noting that networks and regions typically thought to be less 
involved in WM, such as the Limbic network or orbitofrontal cortex, 
continue to not be identified, which suggests that ConnSearch does not 
produce false positives. 

3.2.2. Comparison to connectome-wide interpretation methods 
Comparisons to existing methods using the larger dataset provided 

further evidence that the ConnSearch results more comprehensively 
represented the patterns elicited by WM load. For example, the occipital 
vs. parietal dissociation identified via ConnSearch was less evident in the 
results from the connectome-wide classification/interpretation methods 
(Fig. 6). Specifically, recursive feature elimination only showed the 
involvement of edges connected to the early visual cortex, while con
nectome predictive modeling and Haufe transformation both only 
pointed to a single broad occipitoparietal cluster without any dissocia
tion. In addition, ConnSearch identified particular PFC effects, primarily 
implicating posterior portions of the lateral PFC. On the other hand, 
recursive feature elimination showed no clear frontal involvement, and 
the other two techniques primarily implicated medial and relatively 
anterior portions of the PFC. As noted above, we have no “ground truth” 
about what regions are more relevant, but meta-analyses on BOLD 
activation elicited by WM generally show more prominent lateral and 
posterior PFC effects than medial and anterior PFC effects (de Voogd and 
Hermans, 2022; Wang et al., 2019). These results overall complement 
our initial findings using the smaller dataset and add to the evidence that 
ConnSearch more precisely and comprehensively localizes the neural 
correlates of a task manipulation than these alternative methods. 

3.3. Group-level reliability and replicability 

Our reliability analyses revealed that network components provide 
more reliable measurements than individual edges. Reliability – the 
extent to which participants’ measurements in one run predict their 
measurements in other sessions – was assessed using the test-retest HCP 
dataset. This revealed that medium-to-highly reliable component-level 
measurements (ICC ≈ 0.60) require six sessions of data (30 min of 
scan time), whereas similarly reliable edge-level measurements require 
nine sessions of data (45 min; for more details, see Supplemental Results 

Table 2 
Prevalence of each network pair among the top-1000 edges implicated by recursive 
feature elimination. The table details the recursive feature elimination results 
visualized in Fig. 4A. These results are representative of the results for the other 
connectome-wide methods, as each other method likewise only identified sig
nificant frequencies for edges connected to the Visual network or DAN. This 
table follows the reporting by Eryilmaz et al. (2020) but with added significance 
testing. For a given pair of networks, “#Top 1000″ specifies the number of 
associated edges implicated by feature selection, and “#Features” indicates the 
total number of edges between a given network pair regardless of the feature 
selection results. The latter count was used to calculate the expected frequency 
of top edges for a given network pair if top edges were uniformly distributed. 
“Weighted prevalence” is the number of top edges divided by expected fre
quency. The p-values correspond to whether the weighted prevalence signifi
cantly surpassed 1.0. Only pairs of networks where weighted prevalence 
surpassed 1.0 are reported.  

Within Network 

Network Pair #Features #Top 1000 Weighted Prevalence p-value 
Visual-Visual 703 40 1.98 .001 
DAN-DAN 276 13 1.64 .042 
FPCN-FPCN 595 22 1.28 .189 
Between Network 
Network Pair #Features #Top 1000 Weighted Prevalence p-value 
Visual-FPCN 1330 65 1.70 .002 
FPCN-DAN 840 39 1.61 .002 
Visual-DAN 912 41 1.56 .011 
VAN-DAN 576 22 1.33 .066 
DMN-DAN 1392 51 1.27 .099 
VAN-FPCN 840 29 1.20 .141 
FPCN-DMN 2030 70 1.20 .148 
Visual-DMN 2204 74 1.17 .187 
Visual-Limbic 418 13 1.08 .293 
SM-DMN 2552 76 1.03 .384 
VAN-DMN 1392 41 1.02 .378  

Fig. 5. Network component accuracies at a large sample size. Analysis used connectomes derived from parcellation with the Schaefer et al. (2018) atlas (N = 250 
dataset). Each ROI’s color indicates the accuracy of the component classifier for which it is the Core ROI. For example, the white ROIs in the early visual cortex 
indicate that components based on early visual ROIs yielded highly predictive classifiers. Post., Posterior; dlPFC, Dorsolateral prefrontal cortex; OFC, Orbito
frontal cortex. 
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2.2). Hence, there is an advantage to analyzing network components, 
rather than single edges. 

Our final group-level results showed that ConnSearch yielded more 
replicable findings than interpretation via recursive feature elimination. 
This was assessed by submitting five independent datasets (N = 50 each) 
to ConnSearch and then doing the same using the connectome-wide 
approach. This revealed that the ROIs implicated as relevant by Con
nSearch showed greater overlap among the different datasets (DSC =
0.663 [.628, 0.698]) than the ROIs implicated by the connectome-wide 
method (DSC = 0.583 [.554, 0.612]). 

3.4. Subject-specific ConnSearch 

Beyond just group-level analyses, ConnSearch components can be 
also modeled in other fashions. Subject-specific ConnSearch models each 
component’s data using correlational similarity rather than classifica
tion. This analysis attempts to identify components where the connec
tivity patterns elicited by a condition in the first session, for a given 
participant, predict the participant’s connectivity patterns in the second 
session. As expected, subject-specific ConnSearch found several signifi
cant network components sensitive to WM load, even when using the 

limited dataset (N = 50; Fig. 7 top). For example, the FPCN, which was 
implicated by the group-level analyses, was also identified by this 
subject-specific analysis (Table 3). On the other hand, some networks 
that showed clear group-level effects did not show major subject-specific 
patterns (e.g., Visual network & DMN), suggesting that these networks’ 
task-related responses are more homogeneous across the population. 
Such dissociations between networks highlight how subject-specific 
analyses provide unique insights that complement group-level ana
lyses and how ConnSearch localizes these effects. For confirmatory 
purposes, subject-specific ConnSearch was also performed after 
removing group-level effects by subtracting group means for each con
dition on an edge-by-edge basis. Three components remained significant 
(Entries #1, #6, #7), meaning that, for at least these three components, 
WM load elicits configurations of connectivity unique to each 
participant. 

Further analyses add to the robustness of the FPCN findings. For 
instance, similar results arose when using 24-sized or 32-sized compo
nents (Supplemental Tables S4 & S5). Moving to a larger dataset (N =
250) parcellated with the Schaefer et al. (2018) atlas also showed FPCN 
patterns and now with enhanced precision (Fig. 7 bottom). Analyses of 
replicability moreover revealed that the patterns found using 50 

Fig. 6. Results of alternative methods applied to the large dataset. Analysis used connectomes derived from parcellation with the Schaefer et al. (2018) atlas (N = 250 
dataset). Hot colors indicate ROIs whose associated edges were most frequently implicated as highly predictive by a given interpretation method. Neighborhood 
component feature selection was not computationally feasible for this larger dataset. 

Fig. 7. Significant network components identified by subject-specific ConnSearch. Top. Two significant components are shown from the subject-specific analysis of the 
limited dataset (N = 50), parcellated using the Power et al. (2011) atlas. The components are titled by their entry number in Table 3. Edge colors correspond to 
similarity in terms of Euclidean distance. Bottom. Results reflect the analysis of the large dataset (N = 250), parcellated using the Schaefer et al. (2018) atlas and 
while subtracting group-level 2-back vs. 0-back differences. Each ROI’s color indicates the t-value of the component model for which it is the Core ROI. 
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participants converge across multiple datasets more than what would be 
expected by chance (Supplemental Results 2.3). Overall, these results 
show that task manipulations elicit connectivity effects unique to each 
participant that go above and beyond group-level patterns. Further
more, these results show that ConnSearch is an effective means of 
localizing these effects to specific areas of the connectome, showing the 
framework’s flexibility and positioning it as a potential tool for the 
emerging literature on between-person heterogeneity in brain networks 
(Finn et al., 2015; Tobyne et al., 2018). 

4. Discussion 

The present research introduces a novel framework applicable to 
functional connectivity analysis, referred to as “ConnSearch.” The study 
yielded four main findings. Regarding the group-level analyses, first, 
ConnSearch is viable for task-fMRI research, even when sample sizes are 
limited (N = 50). Second, ConnSearch identifies a more extensive and 
detailed array of neural correlates than the four existing classification 
and interpretation methods tested. Third, ConnSearch operates with 
more reliable data and yields results that are more replicable compared 
to traditional methods. Finally, regarding the subject-specific analyses, 
ConnSearch can identify network components expressing subject- 
specific (heterogeneous) effects. This final result, more broadly, shows 
that ConnSearch is viable with different modeling strategies and shows 
how subject-specific analyses can shed new light on specific networks (e. 
g., only the FPCN shows subject-specific effects of WM load). Below, we 
describe how the neuroscientific patterns identified here are consistent 
with extant research, and we also discuss the methodological implica
tions for ConnSearch and multivariate fMRI analysis in general. 

4.1. Group-level results and comparisons 

By isolating and separately analyzing network components, Con
nSearch was able to detect the WM roles of both perceptual/attentional 
networks (Visual Network and DAN) along with executive processing 
networks (FPCN and DMN), which operate both independently and 
together with one another. Speaking to the sensitivity of ConnSearch, 
these results were first demonstrated using a limited (N = 50) sample, 
which is representative of typical sample sizes used in fMRI studies. 
While we generally advocate for large sample sizes in fMRI research 
(Durnez et al., 2016; Marek et al., 2022), there may be cases in which 
smaller sample sizes are unavoidable, such as when working with special 
populations, where the sensitivity provided by ConnSearch and similar 
approaches may be needed. 

Applying ConnSearch to a larger sample (N = 250) yielded more 
precise results. ConnSearch localized early visual cortex vs. posterior 
parietal cortex processing. In addition, ConnSearch pinpointed the 
involvement of the posterior dorsolateral PFC as the most relevant PFC 
region, while showing that connections to other PFC areas, like the 
orbitofrontal cortex, are less sensitive to WM load. The observed pat
terns are consistent with earlier research showing specific roles of 
different perceptual processes during picture-based WM tasks 

(Makovski and Lavidor, 2014; Yu and Shim, 2017). The results also 
speak to evidence on the general roles of the FPCN and DMN across a 
range of WM paradigms (Eryilmaz et al., 2020; Kim, 2019). More 
broadly, these results point to how WM is a network phenomenon and 
emerges from the coordination between “general purpose” frontal con
trol systems and more “specialized” posterior systems engaged accord
ing to the particular type of processing that they support (e.g., 
sensory-perceptual, verbal-semantic, and sensorimotor; Christophel 
et al., 2017; Lorenc and Sreenivasan, 2021; Reuter-Lorenz and Iordan, 
2021). Hence, ConnSearch is poised to particularly benefit this type of 
research by assisting in distributed-oriented interpretations about brain 
networks rather than specific regions, which can thus validate the 
distributed nature of the tasks. 

On the other hand, the comparison methods yielded less compre
hensive results, which only supported conclusions about a subset of the 
WM correlates noted above. Specifically, the four connectome-wide 
classification and interpretation methods tested – recursive feature 
elimination, neighborhood component feature selection, connectome 
predictive modeling, and Haufe transformation – all found that visual/ 
attentional edges best predicted WM load. However, the four methods 
were more limited in identifying relevant frontal areas and connections 
linked to the FPCN and DMN. These challenges were most prominent 
when the sample size was limited, but even when using the larger 
dataset, no method pinpointed the dorsolateral PFC’s role in WM. For 
the larger dataset, one interesting pattern that arose was a difference 
between the methods in what posterior regions they most implicated. 
Recursive feature elimination found connections to the early visual 
cortex to be most predictive, whereas connectome predictive modeling 
and Haufe transformation pointed to connections with the posterior 
parietal cortex. Hence, the different interpretation methods diverge in 
what they deem most predictive, which can lead to patterns being 
missed. 

Earlier studies using whole-connectome/whole-brain classifiers to 
predict task conditions have likewise found that the occipital lobe is 
among the most predictive areas of the brain whenever virtually any 
picture-based task is used (Xu et al., 2020). This focus on the occipital 
lobe even emerges in research employing deep neural networks (Wang 
et al., 2020b). It is probably due to the ample and stable signal in the 
occipital areas (Grill-Spector et al., 1999), which virtually any 
picture-based task will modulate in some way. Consistent with this 
explanation, overemphasis on occipital lobe patterns occurs less in 
studies regressing individual differences on resting-state data (Dubois 
et al., 2018; Eryilmaz et al., 2020; Shen et al., 2017). These patterns 
speak to our premise that this limitation of interpretation analyses may 
be a particular disadvantage for research on task classification. Con
nSearch overcomes this pitfall by analyzing components individually, 
which precludes patterns within one component from influencing ana
lyses of other components. 

The usefulness of ConnSearch under sample size constraints is 
strengthened by our assessments of replicability and reliability. Repli
cability is receiving ever-growing attention in fMRI research, although 
relatively less so in the context of machine learning methods. Instead, 

Table 3 
Significant network components identified by subject-specific ConnSearch. Asterisks indicate components that remain significant (pFWE < 0.05) after regressing out the 
group average. See the Table 1 caption for details on the table organization. AnG, Angular gyrus; FuG, Fusiform gyrus; SPL, Superior parietal lobule; PrG, Precentral 
gyrus; MFG, Middle frontal gyrus.   

Core ROI Details  Network Component Composition 

Entry # Region BA ROI # t-value DAN DMN FPCN SM VAN Visual 
1 L AnG* 40 194 4.42 19% 12% 69% 0% 0% 0% 
2 L FuG 37 243 3.90 12% 0% 0% 6% 0% 81% 
3 R SPL 40 198 3.85 31% 0% 38% 0% 0% 31% 
4 R PrG 6 204 4.64 25% 0% 31% 0% 6% 38% 
5 L PrG 6 173 4.07 25% 0% 56% 6% 6% 6% 
6 R MFG* 46 174 4.54 25% 12% 56% 0% 6% 0% 
7 L MFG* 9 200 4.73 12% 0% 81% 0% 6% 0%  
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machine learning studies largely have focused on the generalizability of 
models, examining whether trained models can produce accurate pre
dictions when applied to different datasets (e.g., Fountain-Zaragoza 
et al., 2019; Rosenberg et al., 2016). Yet, generalizability is distinct from 
replicability – whether different datasets lead to the same neuroscientific 
inferences. Our research provides initial evidence on this topic and 
points to its importance. We also provide evidence regarding reliability. 
We found that 30 min of scan time is sufficient for “good reliability” 
when analyzing components (ICC ≈ 0.60; Noble et al., 2021), whereas 
45 min is required when analyzing edges. As fMRI-based machine 
learning approaches continue to develop, these topics will likely garner 
further interest. 

To be clear, our goal was not to develop a classifier that surpasses 
others in classification accuracy. Deep learning techniques generally 
perform best in this regard. For functional connectivity data, graph 
neural networks achieve nearly perfect accuracy in dissociating task 
conditions (Li et al., 2021b). Likewise, for analyses of 4D activation 
maps, convolutional neural networks yield nearly perfect accuracy 
(Wang et al., 2020b). Our focus was solely on how multivariate methods 
can be leveraged to localize the neural correlates of a dependent vari
able. For these purposes, ConnSearch proved effective. 

4.2. Sensitivity and cross-validation 

In the Introduction, we noted that a challenge to analyzing compo
nents individually and fitting multiple classifiers is that models may not 
have sufficient data for accurate predictions. This is difficult because 
models tend to benefit from having access to as much information as 
possible – e.g., note how using 32-ROI components yielded many more 
significant components (Supplemental Table S3). Adding to this chal
lenge, fitting many separate classifiers (264 or 1000 in this case) re
quires stricter thresholds for statistical significance as multiple 
hypothesis correction. Nonetheless, our results showed that these chal
lenges can be overcome, even when limited to moderate sample sizes (N 
= 50 or less). 

Much of this success hinged on the use of repeated k-fold cross- 
validation. That is, for cross-validation, the data were split into fifty 
overlapping 80/20 train-test sets. This type of cross-validation deviates 
from the more popular method, where just five 80/20 folds are used. 
However, as described in Supplemental Methods 1.1, repeated k-fold 
cross-validation will lower the accuracy threshold derived from 
permutation-testing (lowering Type II error) and increase the precision 
of the test accuracy (lowering Type I error). These benefits come from 
the fact that test accuracy is essentially measured using a pool that 
contains 1000% of the original examples (10 repetitions × 100% testing 
data = 1000%). Permutation-testing and Supplemental Fig. S1 show 
how, if the traditional 80/20 scheme were used, the permutation-testing 
significance threshold would be much higher, while not conferring any 
advantages. These points were explored in detail by Valente et al. 
(2021), who investigated and confirmed these aspects in the context of 
MVPA. Our findings demonstrate applicability to connectivity research 
and how, by leveraging these principles, new methods become 
available. 

4.3. Subject-Specific ConnSearch 

Subject-specific ConnSearch proved to be a similarly effective tool, 
and these analyses revealed that WM load elicits unique configurations 
of FPCN connectivity that vary across individuals but are stable within 
individuals. This pattern was first shown in the limited dataset (N = 50), 
which speaks to the sensitivity of ConnSearch and demonstrates how 
such analyses need not be exclusive to studies with huge samples. 
However, having more participants imparts benefits. Analyzing the 
larger dataset (N = 250), ConnSearch precisely mapped the FPCN’s 
involvement, showing highly predictive components linked to ROIs 
from the parietal lobe, dorsolateral PFC, and lateral temporal lobe. The 

subject-specific FPCN patterns notably emerged above and beyond the 
trends common across the group. In contrast, heterogeneous effects like 
these were not seen for visual/attentional network components, sug
gesting that the effect of WM load on these networks is more homoge
neous across the population. Hence, WM load elicits a mix of group-level 
and subject-specific effects, which can be found when combining mul
tiple modeling strategies. 

This general perspective on the heterogeneous vs. homogeneous 
nature of functional connectivity has seen increased attention recently, 
with fingerprinting research demonstrating that individuals can be 
distinguished from the rest of the population based on their con
nectomes (Finn et al., 2015; Li et al., 2021a; Ravindra et al., 2021). 
However, thus far, most fingerprinting studies have focused on 
resting-state data (Li et al., 2021a) or on participants’ overall connec
tivity patterns during a task (Finn et al., 2015; Ravindra et al., 2021). 
Our study was relatively unique in that it examined 2-back vs. 0-back 
differences (Tobyne et al., 2018), and hence permits insight into how 
task-related cognitive processes manifest differently among different 
people. Examining cognitive processes in subject-specific manners may 
allow unique insights into complex processes such as intelligence, 
which, to a degree, rely on disparate mechanisms across the population 
(Iuculano et al., 2020). Altogether, the results showcase how Con
nSearch, along with its underlying principles, can support investigations 
into mostly unexplored questions. 

4.4. Future directions 

The ConnSearch approach is modular and can be modified in two key 
manners: First, how the connectome is divided into subsets can be 
changed. Second, how each component is modeled can also be changed. 
Both are important degrees of freedom. Concerning the component 
definition, the present report used a definition that we thought to be the 
most straightforward and intuitive: One component was created for each 
ROI, using it and the N – 1 ROIs with which it is most strongly connected. 
However, this definition may carry limitations in some contexts, such as 
when weak connections are relevant (Santarnecchi et al., 2014). The 
released software can use other component definitions. For example, 
components can be organized in terms of the nodes that are most 
proximal to the Core ROIs. Our preliminary analyses (not reported) 
using the HCP motor task (dissociating hand vs. foot movement; Barch 
et al., 2013) showed that when components are defined in terms of 
proximity, ConnSearch pinpoints significant motor cortex components. 
For subject-specific analyses, researchers may also want to consider 
defining components differently for each participant, given that a uni
form definition may not accurately reflect every person’s functional 
network. Indeed, evidence shows that even the organization of the ca
nonical networks varies somewhat across individuals (Gordon et al., 
2017). Although defining unique components has disadvantages – e.g., 
components may be less reliable because data are not pooled from 
multiple people – this may be a fruitful direction. 

Beyond just using components, it is also worth considering alterna
tive ways of dividing the connectome, such as the technique by Wu et al. 
(2021) mentioned in the Introduction, which fits a classifier based on all 
edges connected to a given ROI. Comparatively, ConnSearch may be 
more effective especially when dealing with smaller samples, potentially 
because component data are less collinear than edges connected to a 
single ROI. Yet, their technique also has advantages, such as in pin
pointing the relevance of specific ROIs. The present research broadly 
supports this emerging paradigm and encourages the development of 
further analytic strategies of this nature, which will likely come with 
other advantages and trade-offs. 

Regarding the component-level modeling procedure, SVMs and 
correlational similarity were used, as earlier research has demonstrated 
the effectiveness of these techniques (Walther et al., 2016). However, 
any type of modeling can be applied, and more sophisticated algorithms 
may provide enhanced accuracy and sensitivity. The use of machine 
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learning methods itself is not a strict requirement. For example, Hotel
ling’s multivariate t-tests can be used for group-level and/or 
subject-specific analyses (requires trial-based designs or a large number 
of blocks; Gilron et al., 2017). The released code permits different op
tions and, as with the component definitions, researchers can specify 
custom classifiers. 

5. Conclusion 

Overall, the present report provides evidence for ConnSearch as a 
novel framework for group-level and subject-specific functional con
nectivity analyses. More broadly, our group-level findings demonstrate 
that, with the right procedures, machine learning tools can find effective 
roles within traditional neuroimaging studies, even when using mod
erate sample sizes. Additionally, our subject-specific findings illustrate 
heterogeneity regarding how different individuals’ brains will respond 
to the same task, and how these patterns can be localized to specific 
networks. To support future investigations of this nature and the 
adoption of machine learning by cognitive neuroscientists, all the cur
rent code is made available publicly with detailed documentation and 
instructions. 
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