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Abstract
The future is bound to bring rapid methodological changes to psychological research. One such promising candidate is the 
use of webcam-based eye tracking. Earlier research investigating the quality of online eye-tracking data has found increased 
spatial and temporal error compared to infrared recordings. Our studies expand on this work by investigating how this spatial 
error impacts researchers’ abilities to study psychological phenomena. We carried out two studies involving emotion–atten-
tion interaction tasks, using four participant samples. In each study, one sample involved typical in-person collection of 
infrared eye-tracking data, and the other involved online collection of webcam-based data. We had two main findings: First, 
we found that the online data replicated seven of eight in-person results, although the effect sizes were just 52% [42%, 62%] 
the size of those seen in-person. Second, explaining the lack of replication in one result, we show how online eye tracking is 
biased toward recording more gaze points near the center of participants’ screen, which can interfere with comparisons if left 
unchecked. Overall, our results suggest that well-powered online eye-tracking research is highly feasible, although researchers 
must exercise caution, collecting more participants and potentially adjusting their stimulus designs or analytic procedures.
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Introduction

Eye tracking is a valuable tool for psychological research, 
and its utility for a wide variety of fields (e.g., decision-
making) is becoming ever more apparent (Amasino 
et  al., 2019; Kragel & Voss, 2022; Strohmaier et  al., 
2020; Voss et al., 2017). However, infrared eye-tracking 
systems remain logistically prohibitive, particularly for 

researchers who acknowledge the benefits of eye tracking 
but do not use it as one of their primary methodologies. 
Fortunately, over the past few years, several groups have 
released freely available software packages that allow eye-
tracking data to be recorded via webcam (e.g., WebGazer.
js; Papoutsaki et al., 2016), and a handful of previous 
studies have explored the efficacy of webcam eye tracking 
(Schneegans et al., 2021; Semmelmann & Weigelt, 2018; 
Yang & Krajbich, 2021; Slim & Harsuiker, 2022; Vos 
et al., 2022; Degen et al., 2021). These studies generally 
agree that webcam eye tracking replicates some patterns 
found in person, but it limits data quality. Building on this 
work, we pursued two complementary lines of questions: 
(1) How much worse is webcam eye tracking in terms of 
detecting the effects of experimental manipulations, and is 
it still feasible and useful to collect the sample size needed 
for a well-powered webcam eye-tracking study? (2) Why 
may some results not replicate online, and can online noise 
introduce biases into specific analyses? These directions 
were specifically chosen to best assess the suitability of 
this technology for psychological research.
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Data quality and spatial error

Earlier studies on the quality of online eye tracking have 
focused on its spatial and temporal error. Webgazer.js’s spa-
tial error is generally 3–4.5° of visual angle for online par-
ticipants (Papoutsaki et al., 2016; Semmelmann & Weigelt, 
2018; Slim & Hartsuiker, 2022). High spatial error is often 
linked to low-quality webcams, which can vary widely in lev-
els of detail (e.g., 0.3–2.1 megapixels). In contrast, infrared 
systems achieve spatial accuracy on the order of 0.5° visual 
angle (Ehinger et al., 2019). For typical viewing distances, 
3–4.5° corresponds to 15–20% of participants’ screens. Such 
percentages would severely limit designs where stimuli are 
close together. However, if participants are asked to sit closer 
to their screens, 3–4.5° would amount to a much smaller por-
tion of it (e.g., 5%). Sitting closer to one’s screen carries 
drawbacks, such as causing participants to turn their heads 
when moving their eyes. Nonetheless, we opted for this strat-
egy, as our studies benefit from higher spatial resolution. 
Webcam-based eye tracking is also often linked to a delay 
compared to infrared data, being roughly 400 ms slower 
in detecting saccades (Degen et al., 2021; Semmelmann & 
Weigelt, 2018; Slim & Hartsuiker, 2022). Delays may cre-
ate particular challenges for designs requiring rapid changes 
in attention. Our studies are largely not impacted by delays.

Although spatial error has been quantified in terms of the 
distances between recorded vs. actual gaze, it remains unclear 
how this impacts the aggregate-level quantities that research-
ers are primarily concerned with. For example, how does 
this noise impact calculations on the time participants spent 
gazing within an interest area? Work by Schneegans et al. 
(2021) begins to shed light topic. In their decision-making 
task, participants chose between two options while eye track-
ing was recorded. In-person participants were recorded as 
spending 75% of the decision time gazing toward the option 
they selected (25% toward non-selected option), whereas 
online participants were recorded as spending just 63% 
toward the option they selected (37% toward non-selected 
option). Thus, the interest area time seems to contract toward 
50%, which is intuitive, since infinite error would lead to 
exactly 50% per interest area if both areas were equally sized.

However, contraction may not fully represent the impact 
of spatial error on aggregate patterns. Given the heatmaps 
reported by previous studies, online eye tracking seems 
to elicit a “centering bias” whereby more gaze points are 
recorded near the center of participants’ screens. For exam-
ple, see the fourth figure of Semmelmann and Weigelt 
(2018), the fourth figure of Slim and Hartsuiker (2022), and 
the fifth figure of Vos et al. (2022). No previous online eye-
tracking report has investigated this centering bias, although 
it may impact the analysis of psychological effects on gaze, 
much like contraction pattern.

Replication of in‑person results

Several online eye-tracking studies have attempted to repli-
cate gaze results from in-person experiments (Degen et al., 
2021; Schneegans et al., 2021; Semmelmann & Weigelt, 
2018; Slim & Hartsuiker, 2022; Yang & Krajbich, 2021). 
Each study showed how some or all of the in-person results 
could be replicated online, although the online results were 
dulled and required larger sample sizes. The more recent 
study by Slim and Hartsuiker (2022) attempted to quan-
tify the extent to which dulling occurred by examining the 
change in effect sizes and estimating how many additional 
participants would be required for online research.

Examining effect sizes is a means of assessing data qual-
ity that departs from other previous papers, which have 
instead focused on spatial or temporal resolution. Measure-
ments of spatial error are valuable but difficult to interpret 
and apply for the ultimate questions many readers will have: 
Will online eye tracking be good enough for testing their 
hypotheses? How many additional participants do research-
ers need to collect to overcome the drop in data quality? 
Examining effect sizes strikes the core of these questions. 
Slim and Hartsuiker (2022) did this but only replicated a sin-
gle effect and so their estimated change in effect sizes comes 
with a wide confidence interval and limited generalizability. 
Precision is invaluable for efficiently assessing necessary 
sample sizes. Accordingly, the present research attempted 
to replicate multiple results (more than most of these ear-
lier replication studies combined) covering a range of effect 
sizes, including both large (d > 0.8) and small-to-moderate 
(0.4 < d < 0.5). Furthermore, we conducted a meta-analysis, 
aggregating our findings on the effect sizes to be expected to 
generate a more exact estimate.

Present study

In sum, the present study investigated the quality of online 
eye-tracking data with a focus on aggregate patterns and the 
ability to detect gaze-related effects in studies, as this direc-
tion best assesses the suitability of this technology for psycho-
logical research. We investigated these questions using data 
from two studies on emotion–attention interactions. For each 
study, one data set was collected in person, while eye track-
ing was recorded via a typical infrared system, and the other 
data set was collected online, while eye tracking was recorded 
via participants’ webcams. The two studies differed slightly 
in their tasks. Study 1 involved presenting participants with a 
series of negative and neutral images, which they freely exam-
ined. This study built upon earlier research on the salience of 
emotional information (Carretié, 2014) and the wide-reaching 
links between emotion and attention (Dolcos, Katsumi, et al., 
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2020b). Study 2 involved presenting participants with the same 
series of images, but with instructions on how to attend the 
images. This study concerned how individuals can use top-
down attentional control to regulate their emotions (Gross & 
John, 2003). Notably, Study 2 partially relied on recently pub-
lished in-person data (Dolcos et al., 2022), and the analyses 
followed identical procedures.

We tested whether each effect seen in-person was repli-
cated online and measured the extent to which effect sizes 
dipped when transitioning to online collection. To achieve 
a precise estimate of the effect size drop, the results below 
also include a meta-analysis, combining each effect size drop 
seen into a single precise measurement. To further under-
stand in-person vs. online differences, simulations were also 
conducted. The simulations modeled the recorded online 
data as a function of the in-person data plus added Gauss-
ian noise. We expected that this would recreate the aggre-
gate online patterns, including the centering bias postulated 
above. Through the simulations, we also modeled how the 
centering bias may impact analyses.

Study 1

Emotional stimuli are known to capture attention. For 
example, when participants are shown an image contain-
ing both negative and neutral elements, they spend more 
time looking at the negative parts of the image (Carretié, 
2014; Öhman et al., 2001). Our first study was based on 
this principle. While eye tracking was recorded, participants 
viewed a series of composite images containing a negative 
or neutral foreground overlaid upon a neutral background, 
with no specific instructions on how to scan the images (free 
viewing). Following the presentation of each image, par-
ticipants reported the intensity of their emotional reactions. 
We expected to (1) find that participants spent more time 
gazing within the foregrounds for negative images relative 
to neutral images. Furthermore, we expected to (2) identify 
trial-by-trial links between foreground time and participants' 
emotional ratings of the images. We predicted that these 
results would emerge in both in-person and online data.

Methods

Participants

We recruited 139 participants from the local university (84 
female; 53 male;  Mage = 19.7; SD age = 1.30) for this study. 
Thirty-four participants completed the in-person version 
of the task (none excluded), and 105 completed the online 
version. The in-person data were collected pre-pandemic 
when almost all subject pool studies were in-person, and 
the online data were collected during the pandemic when all 
subject pool studies were online. From the online sample, 18 

participants were excluded, as they either responded to fewer 
than 75% of the emotional rating trials, showed extreme out-
lier responses in the emotional rating data for the neutral 
trials (Z > 5), or fewer than 75% of their trials yielded usa-
ble eye-tracking data (no gaze recorded for any time point). 
Power analyses (α = .05, power = 80%) based on prelimi-
nary in-person data (dz = 0.72) revealed that a minimum 
of 18 participants would be needed to identify emotion vs. 
neutral effects on in-person gaze, and 63 participants would 
be needed to identify online effects, assuming a 50% drop in 
effect size. However, additional participants were recruited 
based on memory-related hypotheses, although these were 
not the current focus. Sensitivity analyses revealed that the 
34 in-person participants were sufficient to detect effects at 
least dz = 0.50, and the 87 online participants were sufficient 
to detect effects at least dz = 0.31. All participants provided 
informed consent under a protocol approved by the Uni-
versity of Illinois Institutional Review Board and received 
course credit in exchange for participation.

Task design

Eye movements were recorded while participants viewed 
a series of 90 composite images (60 negative and 30 neu-
tral; Fig. 1). Each composite image was created by over-
laying a negative or neutral foreground component upon a 
visually complex neutral background, such that the image 
was approximately 50% foreground and 50% background. 
The foreground components were extracted from images 
part of the International Affective Picture System (IAPS; 
Lang et al., 2008), the Geneva Affective Picture Database 
(GAPED; Dan-Glauser & Scherer, 2011), the Military 
Affective Picture System (MAPS; Goodman et al., 2016), 
the Nencki Affective Picture System (NAPS; Marchewka 
et  al., 2014), and the Emotional Picture Set (EmoPicS; 
Wessa et al., 2010). These pictures sets and freely available 
online sources were used for the BG components. Negative 
and neutral composite images were matched for foreground 
location (i.e., top, bottom, left, right, middle), complexity, 
brightness, contrast, human presence, and animacy (e.g., ani-
mals vs. objects; all ps > .05). A validation study (N = 19) 
using nine-point Likert scales confirmed that the emotional 
images were negatively valenced  (MValence = 2.46,  SDValence 
= 0.79) and arousing  (MArousal = 4.95,  SDArousal = 1.05), 
while neutral images were appropriately neutral  (MValence = 
4.79,  SDValence = 0.48) and non-arousing  (MArousal = 2.17, 
 SDArousal = 0.46).

Each composite image was presented for 4 s. Images were 
followed by a Likert scale asking participants to rate their 
emotional reaction to each image (1 = “Not at all negative”; 
5 = “Very negative”). Testing for possible group differences 
reveals that online participants reported numerically lower 
emotional ratings in the Emotion condition (M = 3.31) than 
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did the in-person participants (M = 3.50; t[120] = – 1.82, p 
= .07). This likely reflects lower engagement for the online 
study, but both groups still showed far higher ratings than 
in the Neutral conditions  (Monline = 1.25,  Min-person = 1.26). 
Thus, we expected the differences in engagement to only 
have a small impact, which we will discuss later. Both stud-
ies also collected self-reported data using questionnaires 
(see Supplemental Materials 1), but those data were not 
the current focus. A subset of participants also completed a 
delayed memory task, but this was also beyond the current 
focus.

Eye‑tracking procedures

For the in-person task, eye positions were recorded from 
each participant’s right eye using the infrared EyeLink 1000 
system (SR Research, ON, Canada). For the online task, 
eye positions were recorded using participants’ webcams 
via the WebGazer.js package (https:// webga zer. cs. brown. 
edu/; Papoutsaki et  al., 2016). Complete details on the 
in-person and online eye-tracking procedures and calibra-
tion are provided in Supplemental Materials 2. WebGazer.
js generates a coordinate (x, y) at each time point. Unlike 
most  infrared eye-tracking software,  WebGazer.js does 
not automatically detect blinks for exclusion. Rather, Web-
Gazer.js roughly records the coordinate where participants 
were gazing prior to the blink.

The presented composite images were large (6” height 
x 8” width on a 15.6” laptop screen) and spanned approxi-
mately 50% of participants’ screens. Additionally, partici-
pants were instructed to sit closer to their laptop screens 
(12–15”), as pilot testing showed that this distance improved 
data quality. Hence, the pictures captured approximately 28° 
and 36° of participants' vertical and horizontal visual fields, 
respectively. These large sizes were expected to enhance the 

quality of the eye tracking, as errors during recording would 
have relatively smaller impacts.

Analysis of the calibration data showed that the aver-
age degree of spatial error (root mean square) was 4.8% of 
the screen’s width in the x-dimension, which corresponds 
to 0.65” and 2.8° visual angle on a standard laptop screen 
(15.6” diagonal and 19:6 aspect ratio). The error was 5.9% 
of the screen’s height in the y-dimension, which corresponds 
to 0.45” and 1.9° visual angle. The total Euclidean distance 
is 0.79” and 3.3°, which is in line with the error reported by 
earlier webcam-based eye-tracking studies (Papoutsaki et al., 
2016; Semmelmann & Weigelt, 2018). These distances are 
consistent with participants’ subjective assessment of error. 
Before the task, participants were shown their predicted gaze 
location in real time with a moving dot and asked to judge 
its precision. Twelve percent of participants reported that 
the dot distance was less than 0.5”, 33% reported that it was 
0.5–1”, 42% reported 1–1.5”, 8% reported 1.5–2”, and 4% 
reported a distance greater than 2”. The average sampling 
rate was 33.1 Hz. The sampling rate varied highly between 
participants (SD = 15.8 Hz) but was stable within-partici-
pant (between-trial SD = 1.3 Hz).

For the in-person group, gaze points recorded as outside 
the image made up 2% of gaze time, with 0.7% of gaze time 
recorded as off-screen entirely or as dead periods. For the 
online group, gaze points outside the image made up 13% of 
gaze time, with 5% recorded as off-screen (WebGazer.js does 
report dead periods). Because such gaze points outside the 
image likely reflect a brief malfunctioning of the eye tracker, 
they were ignored from analyses, and thus the total propor-
tion spent in the foreground or background components 
summed to 100%. The online data is too noisy to effectively 
assess fixations. As in previous online eye-tracking studies 
(Semmelmann & Weigelt, 2018; Yang & Krajbich, 2021), 

Fig. 1  Task diagram for Study 1. Participants were instructed to look 
at the upcoming image and rate their emotional response to the image 
from 1 (“not at all negative”) to 5 (“very negative). The images all 

had a composite structure with roughly 50% dedicated to foreground 
content (which could be either negative or neutral) and 50% to neutral 
background content

https://webgazer.cs.brown.edu/;
https://webgazer.cs.brown.edu/;
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the gaze data were analyzed in terms of the time spent within 
a given interest area.

Analytic procedures

The proportions of gaze points recorded in the foreground 
were submitted to paired t tests and multilevel linear regres-
sions. The t tests examined the effects of image type (emo-
tion vs. neutral) on gaze. The multilevel linear regressions 
measured trial-by-trial links between gaze and emotional 
rating. The full regression equations are provided in Sup-
plemental Materials 3. All of the multilevel regressions fol-
lowed recommended practices (Meteyard & Davies, 2020), 
including the use of a maximal random effects structure 
(Barr et al., 2013), restricted maximum likelihood (Luke, 
2017), and Satterthwaite’s method of estimating degrees 
of freedom (Luke, 2017). These procedures are known 
to minimize the type I error rate (Barr et al., 2013; Luke, 
2017; Meteyard & Davies, 2020). The multilevel regressions 
were fit using R (R Core Team, 2013) and the lme4 package 
(Bates et al., 2014). Fixed effect significance was calculated 
using the lmerTest package (Kuznetsova et al., 2017). For 
the t tests, effect sizes were calculated as Cohen’s dz (t value 
divided by the square root of the sample size); dz was well 
suited for comparing the in-person and online data sets, as 
it is typically used for power analyses and estimating the 
sample sizes needed to detect a given result (Lakens, 2013). 
Measures of “dz” were also calculated for the multilevel 
regression effect sizes, based on the fixed effect t values. 
Although this is not standard procedure for multilevel model 
effect sizes (Lorah, 2018), using “dz” was effective because 
it allows seamless comparisons between the in-person and 
online effects in terms of the statistical power researchers 
can expect when transitioning to online collection.

Simulation and centering bias

We expected the online data’s heatmap, averaged across 
both conditions, to show a centering bias. We simulated 
whether this centering bias may be rooted in the height-
ened spatial error that necessarily accompanies online eye 
tracking (see Fig. 2 for a visual explanation). To confirm 
this link, our simulation added Gaussian noise to the in-
person gaze time series on a point-by-point basis,

where xi is an original in-person gaze point, e is noise sam-
pled from a normal distribution, and x′

i
 is the resulting meas-

urement, which simulates the noisy online data. The amount 

x
�

i
= x

i
+ e,

e ∼ N(0, 0.1),

of Gaussian noise (σ = 0.10) was selected as the smallest 
amount necessary to simulate the attentional-aversion flip 
(see below). The simulation was carried out ten times, then 
averaged.

Results

Replication

Consistent with our predictions, clear attention-capturing 
effects of emotion emerged in both the in-person and 
online eye-tracking studies. Specifically, participants spent 
significantly more time in the foreground areas of negative 
than neutral images, both in the in-person (t[33] = 6.65, p 
< .001, dz = 1.14; Fig. 3A) and online data (t[86] = 5.72, 
p < .001, dz = 0.61; Fig. 3B).

The trial-by-trial analyses using multilevel regressions 
also yielded robust replications. Analogous to the t test 
above, a regression predicting emotional ratings as a func-
tion of foreground gaze, showed strong effects for both 
the in-person (β [standardized] = .20, p < .001, dz = 0.99; 
Fig. 3C) and online data (β = .07, p < .001, dz = 0.524; 
Fig. 3D). Furthermore, a version of this regression, which 
controlled for whether the image was emotional vs. neu-
tral, also showed significant effects of foreground gaze 
on ratings for both the in-person (β = .042 p = .01, dz = 
0.45) and online data (β = .02, p = .03, dz = 0.23). This 
final regression demonstrates that gaze behavior dissoci-
ates between emotional images that elicit intense vs. mild 
reactions. This effect is a subtler difference than the ini-
tial emotional vs. neutral comparisons, and it shows the 
effectiveness of online eye tracking in identifying even 
relatively fine-grain patterns. Overall, these results sug-
gest that the switch to online eye tracking led to decreased, 

Fig. 2  Spatial noise can cause a centering bias. The element on the 
left represents how a fixation would be recorded by a webcam eye 
tracker, and the right panel shows how this noise leads to more gaze 
points recorded near the center of the image. For simplicity, the noise 
is represented as a circle, but the point holds if instead it is repre-
sented by any shape
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albeit manageable effect sizes. For robustness, this point 
was further examined using data from another study.

Simulation and centering bias

To further investigate the aggregate-level effects of transi-
tioning to online eye tracking, we examined the heatmaps, 
averaged across both conditions, for each group. Whereas the 
in-person data have a largely uniform distribution (Fig. 4A), 
the online data shows a peak in the center (Fig. 4B). Simu-
lating the transition from in-person to online eye tracking 
as the addition of Gaussian noise creates the same center-
biased pattern (Fig. 4C). Thus, spatial noise, which may be 
symmetric in its impact on individual gaze points, can create 
emergent patterns when aggregated, like this centering bias.

Study 2

Our second study aimed to replicate previously published 
results on emotion–attention interactions (Dolcos et al., 
2022), which examined “focused attention” as an emotion-
regulation strategy. Participants viewed the same series of 
negative and neutral images, as in Study 1, but now, before 
each image, participants were cued to focus on either its fore-
ground or background areas. After each image, participants 
reported their emotional rating. The published eye-tracking 
data (Dolcos, Katsumi, et al., 2020a) showed that (1) partici-
pants could effectively control their attention based on the 
cues, focusing on the foreground or background content as 
instructed, but (2) some minor emotional attention-capture 
or attention-aversion effects were still present. Although 

Fig. 3  In-person vs. online comparison of the Study 1 results. A Rep-
resenting the emotional vs. neutral paired t test on the in-person data. 
B Representing the same t test but on the online data. C Representing 
the multilevel regression linking gaze and emotional rating in the in-

person data. D Representing the same regression but for the online 
data. Error bars represent 1 standard deviation  above/below the 
mean. The shaded region represents a 95% confidence interval. FG 
foreground. ***, p < .001

Fig. 4  Heatmaps averaged across all images. The three heatmaps correspond to the in-person (A), online (B), and simulated (C) data. The Car-
tesian plane (0-1) corresponds to the participant’s full screen, where the aspect ratio differed between in-person (4:3) and online (typically 16:9)
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these second results were subtle and mostly peripheral to 
the main focus, they showed that when participants were 
instructed to focus on the background content of images, 
slight attention-capture effects still occurred (i.e., the emo-
tional foreground captured their gaze). Also, when instructed 
to focus on the foreground, subtle attentional-aversion reac-
tions also occurred, where participants slightly shifted their 
focus away from the emotional foregrounds. Returning to the 
main direction of this published research, trial-by-trial analy-
ses showed that (3) time spent gazing within the background 
(i.e., the extent that participants carried out focused atten-
tion effectively) predicted the intensity of their emotional 
responses. This final pattern even emerged when statisti-
cally controlling for the attentional cue. For example, when 
participants were instructed to focus on the background, 
spending 90% of the time gazing within the background led 
to milder emotional reactions than spending 80%. These 
findings speak to the importance of gaze patterns during 
emotion processing and suggest that attentional control is a 
suitable target for emotion regulation (Dolcos et al., 2020a; 
Dolcos et al., 2020c; Gross & John, 2003; Strauss et al., 
2016). Hence, we expected that similar patterns would also 
emerge in the online data.

Expanding on the Study 1 simulation results, we also 
tested how the centering bias elicited by spatial noise can 
impact gaze analyses and replication. Specifically, we 
conducted our noisy simulation and submitted the data to 
one of the analyses we sought to replicate – namely, the 
attentional-aversion effect. We examined how the results 
changed following the addition of noise and how this 
change interacts with interest area positions.

Methods

Participants

We recruited 264 participants from the local university (159 
female; 99 male;  Mage = 20.1,  SDage = 1.64) for this study. 
Forty-five completed the in-person version of the task, and 
219 completed the online version. Three in-person partici-
pants were excluded due to outlier responses or technical 
issues (as was done by Dolcos et al., 2022). Thirty-nine 
online participants were excluded following the criteria 
of Study 1. The in-person sample size was justified by the 
power analysis described by Dolcos et al. (2022). For the 
online version, effects from an independent data set were 
used to carry out a power analysis for the main result of 
interest (emotional ratings regressed on gaze while control-
ling attention), which revealed that 130 participants would 
be sufficient. However, like in Study 1, a larger data set 
was collected due to hypotheses regarding memory-related 
effects, which are beyond the current focus. Sensitivity 
analyses revealed that the 41 in-person participants were 

sufficient to detect effects at least dz = 0.45, and the 180 
online participants were sufficient to detect effects at least dz 
= 0.21. All participants provided informed consent under a 
protocol approved by the University of Illinois Institutional 
Review Board and received course credit in exchange for 
participation.

Task protocols

Study 2 modified the design of Study 1 to provide an atten-
tional cue before each image, which instructed participants 
to either focus on foreground or background components 
of composite images (task diagram shown in Supplemental 
Fig. S1). Half of the images were preceded by a foreground 
focus cue (30 negative, 15 neutral) and the other half by a 
background focus cue (30 negative, 15 neutral). Neither the 
mean nor the variance of the emotional ratings significantly 
differed between the in-person vs. online data sets, for any 
condition (ps > .12). As in Study 1, examination of the emo-
tional rating data suggests slightly lower engagement for the 
online group. When instructed to focus on the emotional 
foreground, online participants showed numerically lower 
emotion ratings (M = 3.51) than in-person participants (M 
= 3.74, t[221] = 1.48, p = .14, d = 0.10). When instructed to 
focus on the background, online participants showed numer-
ically higher ratings (M = 2.56) than in-person participants 
(M = 2.41, t[221] = 1.03, p = .30, d = 0.07). Although 
neither test reached significance, these numerical patterns 
may suggest that online participants exerted less top-down 
attentional control.

Eye-tracking procedures were the same as for Study 1 
(see Supplemental Materials 2). The analyses mirrored those 
from Dolcos et al. (2022), involving paired t tests and mul-
tilevel regressions. The t tests examined the effects of the 
attentional cues (foreground focus vs. background focus) or 
image type (emotion vs. neutral) on gaze. The multilevel 
regressions examined the effect of gaze on emotional rat-
ings. Multilevel modeling followed the recommended prac-
tices described in Study 1 (Meteyard & Davies, 2020), and 
the full regression equations are provided in Supplemental 
Materials 3.

Aggregating the effect sizes as percentages

After completing the analyses, the results were aggregated 
to generate an overall estimate of the effect size change 
between in-person and online collection. This was calcu-
lated as follows: First, for each online result, a distribution 
of dz was generated via bootstrapping – i.e., constructing 
new data sets via random sampling with replacement, then 
submitting the constructed data sets to identical analyses 
(10,000 bootstrap simulations). Second, for each analysis 
that was replicated, the dz distribution was transformed into 
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a distribution of percentages via dividing by the in-person 
dz. For example, if an analysis yielded in-person dz = 0.8 
and online dz = 0.5, this suggests that online effect sizes 
tend to be 62.5% of those found in person. This calcula-
tion was performed for the entire distribution – e.g., if the 
95% confidence interval for dz was [0.3, 0.7], this would 
correspond to a percentage confidence interval of [37.5%, 
87.5%]. Third, a meta-analysis was done on the distributions 
of percentages by taking the product (geometric mean) of the 
percentage distributions. The figure showing the aggregation 
below illustrates this procedure. One effect size distribu-
tion was an outlier in terms of having an extremely small 
standard deviation. This small standard deviation was due 
to the in-person effect size being extremely large. Given the 
small standard deviation, it was omitted as it would other-
wise dominate the aggregation, contributing more than all 
other effects combined.

Simulation and centering bias

The simulation procedures for Study 1 were applied again 
but now to test how the spatial error impacts replication. 
The simulation was done for the attentional-aversion result, 
which compared foreground gaze time between the emo-
tional foreground-focus and neutral foreground-focus 
conditions. Noise was added to the in-person data for the 
emotional and neutral foreground-focus conditions, and the 
resulting noisy data were submitted to the same comparison. 
This was expected to reproduce the t test results seen online.

Furthermore, to test how this analysis is influenced by 
the centering phenomenon that emerges from low spa-
tial resolution, we examined the extent our stimuli were 
susceptible to the bias. Our stimuli – composite images 
– were photorealistic combinations of foreground and 
background components and, accordingly, the interest 
areas were intricate. Inevitably, each image foreground 
was unique in shape and extent of overlap with the center, 
meaning each trial’s data were differently susceptible to 
the centering bias. Quantifying this point, we defined a 

Gaussian distribution at the screen center, and we meas-
ured the extent each image’s foreground overlapped with 
that distribution (overlap weighed by the distribution’s 
density at a given point). Then, to test how differences in 
center overlap may impact analyses, we split our original 
pool of 60 emotional images into two 30-image subsets 
(Fig. 5). The first subset was created by matching each 
neutral image to the emotional ones that were the most 
similar in terms of overlap, hence creating a “matched” 
set of 30 emotional images (M = 0.597), which mirrored 
the centrality of the 30 neutral images (M = 0.592). The 
second subset was the remaining 30 emotional images, 
which were more central on average (M = 0.742) than 
the neutral ones (“unmatched”). The simulation was then 
conducted twice, testing for an attentional-aversion effect 
between the neutral images vs. matched emotional images 
and the neutral vs. unmatched emotional images.

Results

Replication

As expected, the eye-tracking data reliably dissociated the 
foreground focus vs. background focus conditions. Compar-
ing the two focus conditions after averaging across the emo-
tional and neutral trials revealed robust findings with large 
effect sizes in both the in-person (t[41] = 42.9, p < .001, dz 
= 6.62; Fig. 6A vs. 6C) and online data (t[179] = 12.3, p 
< .001, dz = 0.92; Fig. 6B vs. 6D). However, in a relative 
sense, the online effect size was much lower than that of the 
in-person effect size (dz = 0.92 vs. dz = 6.62).

The two subtler branches of analysis (secondary findings 
by Dolcos et al., 2022) yielded partial replications. These 
analyses investigated the effect of emotion on each focus con-
dition. Examining the effect of emotion on the background 
focus trials revealed attention-capture effects in person (t[41] 
= 4.57, p < .001, dz = 0.71; Fig. 6A), which were replicated 
online (t[179] = 4.48, p < .001, dz = 0.35; Fig. 6B). In other 
words, when asked to focus on the background, participants 

Fig. 5  Interest areas for the emotional and neutral conditions. 1.0 
(hot) indicates that every interest area (IA)  overlaps a given screen 
pixel, whereas 0.0 (cold) indicates that no interest area overlaps it. 

Black circles were added as visual references to help compare the dif-
ferent stimulus categories’ overlap with the center
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gazed more in the foreground when this area contained emo-
tional information. On the other hand, examination of the 
foreground focus trials revealed that an aversion effect was 
identified in person (t[41] = – 4.15, p < .001; dz = – 0.64; 
Fig. 6C). That is, when asked to focus on the foreground, 
participants spent less time in the foreground when the area 
contained emotional information, relative to when it con-
tained neutral information. However, in the online data, this 
analysis showed the direct opposite effect (t[179] = 6.2477, 
p < .001, dz = – 0.47; Fig. 6D). Interestingly, post hoc tests 
show that online participants instructed to focus on the fore-
ground spent numerically more time (0.6%) gazing outside 
the emotional image entirely, compared to neutral images 
(t[179] = 1.58, p = .12). Although this result is not signifi-
cant, the trend suggests that some attentional aversion may 

be occurring online, which is incompatible with the primary 
attentional-aversion analyses showing the total opposite. 
This peculiar pattern requires an explanation, and we inves-
tigated it further below using simulations.

Finally, the effect of gaze on emotional ratings, which 
was the main finding in the Dolcos et al. (2022) paper, was 
also robustly replicated. Following the procedures of the 
published report, this analysis was first conducted on solely 
the emotional trials, which yielded significant effects for 
both the in-person (β = .11; p = .01, dz = 0.41; Fig. 6E) and 
online data (β = .10; p < .001, dz = 0.22; Fig. 6F). In other 
words, emotional ratings decreased as participants spent 
more time in the background. The analysis was then per-
formed using solely the neutral trials, which did not yield a 
significant effect for the in-person (β = – .07, p = .32, dz = 

Fig. 6  In-person vs. online comparison of the Study 2 results. A Rep-
resenting the emotional background focus vs. neutral background 
focus paired t test on the in-person data. B Representing the same t 
test but on the online data, where the in-person effect replicated. C 
Representing the emotional foreground focus vs. neutral foreground 
focus paired t test on the in-person data. D Representing the same t 
test but on the online data, where the in-person effect did not repli-

cate. E Representing multilevel regression of emotional ratings on 
gaze while statistically controlling for the attentional cue. F Rep-
resenting the same regression but for the online data. Note that the 
y-axes ranges differ between the rows. Error bars represent 1 stand-
ard deviation above/below the mean. The shaded region represents a 
95% confidence interval. FG foreground; BG background. ***, p < 
.001
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0.16) nor the online data (β = .01, p = .25, dz = 0.02). This 
demonstrates “replication” of null results, which is evidence 
that analyses of the online data were not “oversensitive” or 
tapping into spurious false-positive patterns.

Aggregating the effect size percentages

To attain an overall estimate of the level of drop expected 
when transitioning from in-person to online eye-tracking 
research, the results from each analysis of each study were 
aggregated (all results listed in Table 1). As described in 
the Methods section, bootstrapping was used to generate 
a probability distribution of effect sizes for each result 
– analogous to how a confidence interval would be con-
structed. Then, these were transformed into percentages 
that represent the effect size preserved when transitioning 
from in-person to online research (rightmost column of 
Table 1). Aggregating these percentages revealed that the 
online data yielded effect sizes that were 52% [42%, 62%] 
of what is seen in person (Fig. 7).

Explaining the attentional‑aversion flip

To explain the flip seen between the in-person vs. online 
groups for the attentional-aversion result, the simulation 
from Study 1 was used again here. Originally, in-person 
participants instructed to focus on the foreground spent 
less time gazing toward it if it was emotional. However, 
adding Gaussian noise to the gaze time series causes par-
ticipants to be recorded as spending significantly more 
time in the foreground for the emotional rather than neutral 
condition (t[41] = 4.70, p = .001, d = 0.72). Thus, the 

simulation reproduces the flip seen in the actual online 
results. Further analyses probed whether this flip can be 
explained by the centering bias and the degree of overlap 
with the center among emotional stimuli. The simulation 
was conducted again, now only analyzing a subset of trials 
where overlap with the center is equated in a pool of 30 
emotional and 30 neutral stimuli. This led to the flip being 
undone and the original result reproduced, whereby more 
foreground gaze was recorded for the neutral rather than 
emotional condition (t[41] = 2.23, p = .03, dz = 0.34). On 

Fig. 7  Aggregating the findings on the degree of drop expected. 
Aggregation was performed by taking the product of the five 
colored distributions (legend numbers correspond to the entries 
in Table 1). Note that entry 4  from Table 1 was not included, as its 
associated small standard deviation would cause an outsized impact 
on the  aggregation. The aggregated distribution is shown in black 
and with a thick line. Its 95% confidence interval is indicated using 
dashed lines 

Table 1  Effect-size comparisons for Studies 1 and 2

Each row corresponds to one of the eight analyses tested and its effect sizes (Cohen’s dz) for the in-person and online data sets. The rightmost 
column (%) represents the size of the online effect size divided by the in-person one. “✕” signifies that the effect did not emerge in a given data 
set. Concerning the last row, the “N/A” indicates that the comparison of effects sizes is not applicable, given that no significant effect of gaze 
on emotional ratings was found among the neutral trials for either data set (i.e., the in-person null result was “replicated” in the online data). FG 
foreground, BG background, Emo emotional, Neu neutral

Effect In-Person Online Online / In-Person (%)

Study 1:
 1. Emotion vs. neutral 1.14 0.61 [0.41, 0.81] 53.9% [36.3%, 71.5%]
 2. EmoRating 0.99 0.52 [0.31, 0.74] 53.1% [31.5%, 74.6%]
 3. EmoRating (Control Emo) 0.45 0.23 [0.01, 0.45] 51.2% [2.6%, 99.8%]

Study 2:
 4. Attentional cue 6.62 0.92 [0.82, 1.02] 13.9% [12.3%, 15.4%]
 5. Emotional capture (BG) 0.71 0.35 [0.22, 0.46] 49.4% [33.2%, 65.7%]
 6. Emotional aversion (FG) – 0.64 ✕ ✕
 7. EmoRating (Emo only) 0.41 0.22 [0.08, 0.36] 53.5% [18.9%, 88.1%]
 8. EmoRating (Neu only) 0.16 0.08 [– 0.06, 0.23] N/A
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the other hand, the simulation can also be conducted while 
maximizing discrepancies in center overlap. This causes 
the flip to be amplified (t[41] = 7.00, p < .001, dz = 1.08) 
relative to the original flip (dz = 0.72). Hence, the atten-
tional flip is rooted in the centrality of the foregrounds of 
individual stimuli.

Discussion

Altogether, the two studies provide insight into how the 
spatial error of online eye tracking impacts analyses of 
psychological effects on gaze. The two studies showed that 
seven of the original eight in-person results were repli-
cated online, and that researchers can expect effect sizes 
52% [42%, 62%] of those seen in person. Additionally, the 
studies demonstrated a centering bias that arises during 
online eye-tracking research. The bias explains why one 
result did not replicate online, where it even showed a 
significant flip in the opposite direction of what was seen 
in-person. Altogether, our results provide a quantifica-
tion of how much weaker online eye-tracking data can be 
expected to be in replicating in-person results. Further-
more, we also provide evidence for a “centering bias” in 
the online eye-tracking data that explains why one of our 
in-person findings did not replicate in the online data.

Replications and effect sizes

The present research builds on the growing online eye-
tracking literature (Schneegans et al., 2021; Semmelmann 
& Weigelt, 2018; Yang & Krajbich, 2021; Slim & Har-
suiker, 2022; Vos et al., 2022; Degen et al., 2021). To 
varying degrees, these earlier studies arrived at the same 
conclusion: although data quality is reduced, online eye 
tracking partially replicates patterns found by in-person 
eye tracking. These earlier studies also provided evidence 
on several important methodological points (e.g., on the 
effects of glasses and head positioning) and yielded initial 
estimates of data quality outside the context of psychologi-
cal tasks and effects (e.g., the distance from gaze meas-
urement to fixation cross). The present research advances 
this body of work by quantifying the quality of online 
eye-tracking data with respect to detecting psychologi-
cal effects within experiments. Hence, the current studies 
inform the feasibility and usefulness of adopting this new 
technology by researchers.

The present studies were best suited to expand the 
extant research for several reasons. First, our studies used 
the same types of participants for both in-person and 
online samples, while earlier research collected in-person 

and online data from different populations (local commu-
nity vs. online crowdsourcing), which may create potential 
confounds during comparison (Ahler et al., 2019). Second, 
unlike earlier works, which attempted to replicate between 
one and three hypotheses, the current research targeted 
eight hypotheses in total across two studies, which covered 
a diverse range of effect size magnitudes. These aspects 
increase the generalizability of the conclusions. Third, the 
present research uniquely targeted highly reliable emotion 
processing effects (Carretié, 2014), which were expected 
to arise both in person and online, and would be less sus-
ceptible to other sources of in-person vs. online differences 
(e.g., participant engagement; Ahler et al., 2019).

Ultimately, the present results suggest that online eye 
tracking will yield effects sizes 42–62% of what is found 
in person. Additionally, online eye-tracking will lead to the 
time recorded within a given interest area to approach 
chance rates (e.g., 50% gaze for each condition), mirror-
ing the results by Schneegans et al. (2021). Regarding the 
effect size drops, we do not wish to understate that they 
are substantial. However, they are surmountable. For exam-
ple, to achieve appropriate statistical power (power = 80%, 
two-tailed α = .05), an in-person study targeting a moderate 
effect (dz = 0.50) requires 34 participants, while an online 
study (dz = 0.25; 50% drop) would require roughly 128 par-
ticipants. Researchers will inevitably also need to recruit 
further participants beyond that, as this sample size does 
not account for issues related to non-compliance or other 
challenges that arise with online research. For instance, we 
needed to exclude 18% of participants’ data because of low 
response rates or unusable gaze data. Nonetheless, even with 
the need for exclusion, these sample sizes remains attain-
able, given the ease of online data collection and the trend in 
psychology for larger samples (Sassenberg & Ditrich, 2019).

Although excluding 18% of online participants is a 
high rate compared to most psychological studies, it is 
notably lower than typical in online eye-tracking research 
(e.g., Schneegans et al., 2021; Slim & Hartsuiker, 2022; 
Yang & Krajbich, 2021). As part of preliminary analyses, 
we attempted more conservative exclusion procedures to 
clean the data, such as excluding participants who self-
reported high head movement or who wore glasses. These 
cleaning procedures enhanced online effect sizes, but the 
benefits did not compensate for the reduction in sam-
ple size (Cohen’s d increased while t values decreased). 
Hence, we opted to include those data sets.

One outstanding question for interpreting our results is 
the extent to which the effect size drops should be under-
stood as technological differences between infrared-based 
vs. webcam-based eye tracking or due to behavioral dif-
ferences. Several previous studies have demonstrated that 
online crowdsourced samples are of lower quality (e.g., on 
Amazon Mechanical Turk; Kees et al., 2017). Our research 
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used participants samples of the same type (college stu-
dents) for both the in-person and online conditions and 
thus provides a cleaner comparison than studies compar-
ing college students to crowdsourced samples. However, 
even with the same population, data quality degrades when 
transitioning online. In the present studies, we saw nominal 
patterns suggesting that online participants had dampened 
emotional reactions and exerted less attentional control, 
possibly reflecting lower engagement. This likely explains 
some differences between the in-person and online data. For 
instance, although the centering bias goes a long way in 
explaining the flip seen in the Study 2 attentional-aversion 
result, the dampened emotional processing by online partici-
pants likely added to it. The aversion effect involves arousal 
overriding participants’ top-down attentional control, but if 
participants’ affective responses are weak and they do not 
exert substantial control in either condition, the impact of 
emotional stimuli will be smaller. Hence, aside from just 
the impact of changing technologies, when transitioning 
to online studies, researchers must also consider possible 
behavioral changes, which may impact some hypotheses 
more than others.

Recommendations regarding the centering 
bias in online data

Online eye tracking’s high spatial error (3–4.5° visual 
angle) is well known (Papoutsaki et al., 2016; Semmelmann 
& Weigelt, 2018; Slim & Hartsuiker, 2022), but how this 
error impacts researcher’s abilities to detect psychological 
effects has been unclear. Our findings bridge these levels of 
analysis and come with specific recommendations: Authors 
must be careful in designing their stimuli to avoid interfer-
ence due to the centering bias, such as by having symmetry 
in their interest areas. For example, in decision-making or 
memory tasks, choices are often represented as rectangles, 
which are the interest areas. When two choices are avail-
able, placing them left/right or top/down avoids centering 
bias interference (Schneegans et al., 2021; Yang & Krajbich, 
2021), but when three or more choices are available, risks 
arise if some choices are closer to the center (Hutt et al., 
2023). Such dangers can notably be mitigated via counter-
balancing or analyzing the different interest area locations 
independently. These good practices, already common for 
in-person research, become more important when transition-
ing to online eye-tracking collection and are also particularly 
relevant when using complex pictorial stimuli.

Counterbalancing is more challenging for designs like the 
present one, which used realistic stimuli and interest areas 
with complex shapes. In these cases, we advise researchers 
to perform quantifications like ours, measuring the extent 
to which the stimuli’s interest areas are susceptible to the 

centering bias. Beyond just the centering bias we found, 
related risks may also exist that future studies can like-
wise see via simulations (e.g., bias related to interest areas’ 
shapes). Although the present report’s partial focus on effect 
sizes may seem to frame online eye tracking as simply uni-
formly lower quality than in-person eye tracking, this would 
be an inappropriate simplification, as researchers must be 
cognizant of how noise may interact with their own specific 
interest areas and comparisons.

Broad implications

Critically, we would like to also emphasize that implement-
ing online eye tracking is surprisingly easy within flexible 
experiment platforms (e.g., https:// pavlo via. org/). By relying 
on the freely available WebGazer.js package, we were able 
to incorporate eye tracking within our online study in just 
a couple of hours and two dozen lines of code. Hence, the 
current results do not speak just to labs already conducting 
eye-tracking research. Given the low “cost” of online eye 
tracking, it is worthwhile for a wide range of research to 
incorporate eye tracking, even in cases where gaze is not the 
primary focus or just for exploratory purposes. For exam-
ple, in emotional memory research, the attention-capturing 
effect of emotional stimuli is often a potential confound 
that muddles investigation of other mechanisms by which 
emotion impacts memory (Bogdan et al., 2023; Riggs et al., 
2011; Voss et al., 2017). Likewise, the effect of aging on 
memory too involves perceptual mechanisms/confounds, 
as aging changes people’s viewing patterns, which in turn 
impact encoding (Voss et al., 2017). Beyond memory stud-
ies, decision-making research also stands to benefit from 
incorporating eye tracking – e.g., investigating the time 
participants spend gazing towards each available choice is 
informative for understanding how they arrive at their final 
decision (Brunyé & Gardony, 2017; Fiedler & Glöckner, 
2012; Krajbich et al., 2010; Kwak et al., 2015). Thus, the 
greatest benefit of webcam-based eye tracking may not come 
from vision labs taking their in-person experiments online. 
Rather, its inclusion may benefit other areas of research 
incorporating eye tracking to investigate/account for the role 
of attention in various psychological phenomena. Although 
online eye tracking is far from perfect, it can at least provide 
important evidence on the role of attentional processes in 
research designs involving visual stimuli.

Caveats

Although Study 1 identified repeated patterns of strong 
replication (three out of three), Study 2 did not show 
quite the same high level of consistency (four out of five). 

https://pavlovia.org/
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Additionally, for Study 2, one of the analyses replicated 
but with a very large drop in the effect size. Although this 
was by far the largest drop across either study, it should 
be noted that the online effect size remained large, in an 
absolute sense (dz = 0.9), and the in-person effect was far 
beyond what is typically studied in psychological research 
(dz = 6.6). Given these large magnitudes, this analysis may 
be less representative and does not change the conclusion of 
the investigation. Finally, concerning the result which did 
not replicate at all, it is worth noting that it was among the 
more subtle in-person effects (see the numerically small in-
person differences in-person in Fig. 6C). Nonetheless, the 
main finding by Dolcos et al. (2022) was replicated with a 
robust online effect size. This final result is probably the 
most representative, as the in-person effect size is most 
consistent with what is typically targeted by psychological 
research (medium and small-to-medium effects; Gignac & 
Szodorai, 2016; Lovakov & Agadullina, 2021).

Conclusion

In sum, the present results suggest that effective online eye-
tracking research is currently possible. Across two studies 
and eight different analyses, seven of the patterns found in 
person were replicated in the online eye-tracking data. Fur-
ther, effect size comparison between the two data sets showed 
that well-powered online eye-tracking research is possible 
with realistic sample sizes. Hence, researchers studying 
gaze in-person can perform some of their studies online, and 
researchers already conducting online research can benefit 
from recording eye movements. Although online eye tracking 
also comes with limitations, given the relative ease of online 
collection and its wide-reaching utility (e.g., for emotion, 
memory, and decision-making research), researchers should 
begin to consider this emerging technology.
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