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Abstract
Our behavior is shaped by multiple factors, including direct feedback (seeing the 
outcomes of our past actions) and social observation (in part, via a drive to con-
form to other peoples' behaviors). However, it remains unclear how these two 
processes are linked in the context of behavioral change. This is important to 
investigate, as behavioral change is associated with distinct neural correlates that 
reflect specific aspects of processing, such as information integration and rule 
updating. To clarify whether these processes characterize both direct learning 
and conformity, we elicited the two within the same task, using a role-swapping 
version of the Ultimatum Game—a fairness paradigm where subjects decide how 
to share a pot of money with other players—while electroencephalography (EEG) 
data were recorded. Behavioral results showed that subjects decided how to di-
vide the pot based on both direct feedback (seeing whether their past proposals 
were accepted or rejected) and social observation (copying the splits that others 
just proposed). Converging EEG evidence revealed that increased centroparietal 
positivity (P2, P3b, and late positivity) indexed behavioral changes motivated by 
direct feedback and those motivated by drives to conform. However, exploratory 
analyses also suggest that these two motivating factors may also be dissociable, 
and that frontal midline theta oscillations may predict behavioral changes linked 
to direct feedback but not conformity. Overall, this study provides novel electro-
physiological evidence regarding the different forms of behavioral change. These 
findings are also relevant for understanding the mechanisms of social informa-
tion processing that underlie successful cooperation.
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1   |   INTRODUCTION

Human behavior is shaped by multiple sources. Most ob-
viously, it is modified by direct learning through feedback 
(rewards and losses) encountered while interacting with 
the environment (Niv, 2009). Our behavior is also shaped 
indirectly by observing the actions of our peers, which of-
tentimes trigger drives to conform and imitate their be-
havior (Bandura & Walters, 1977; Shamay-Tsoory et al., 
2019; e.g., students naturally picking up the good and bad 
habits of their colleagues).1 Conformity and learning 
through observation are central to adaptive social decision-
making, and clarifying their neural mechanisms is a major 
focus of current research with notable links to clinical 
conditions, such as autism (Varni et al., 1979) and depres-
sion (Thoma et al., 2015). A key question within this area 
is how the neurocognitive systems associated with pro-
cessing other people's actions overlap with the machinery 
dedicated to directly learning from rewards and losses 
(Bellebaum et al., 2010; Klucharev et al., 2009; Levorsen 
et al., 2021). In particular, it remains unclear how drives to 
conform and reward/loss feedback each influence behav-
ioral change.

Behavioral change motivated by direct learning is 
associated with distinct neural correlates that reflect 
integrating information, updating rules, and exercising 
cognitive control (Cavanagh & Frank, 2014; Chase et al., 
2011; Eppinger et al., 2017), but it is unclear whether 
these processes are also common to conformity or in-
stead dissociate the two. The present study fills this 
gap by using a task that triggers both types of learning 
to investigate their links to behavioral change, while 
electroencephalography (EEG) data were recorded. 
Clarification of these issues is important for under-
standing the mechanisms behind social information 
processing.

There are several key challenges in integrating re-
search on direct learning versus learning through ob-
servation. The former is generally addressed in settings 
wherein subjects learn how to make decisions that max-
imize their rewards (Chase et al., 2011; Donaldson et al., 
2016; San Martín et al., 2013). In contrast, conformity 
studies rarely include a reward dimension (Pierguidi 

et al., 2019; Wang et al., 2019). Some reward-focused 
works have notably examined the links between direct 
learning and learning through observation (Bellebaum 
et al., 2010, 2012; Peterburs et al., 2021; Rak et al., 2013) 
but did not specifically examine conformity. These stud-
ies typically involved subjects observing the decisions 
of another person and seeing whether it yielded a re-
ward or loss. Such observations lead to subjects chang-
ing their own decision-making. However, it is not clear 
whether such changes are caused by learning that the 
action led to some outcome, or are instead the result of 
a social drive to conform. To better shed light on these 
different processes, the latter was the sole focus of the 
present study.

To overcome these challenges, we employed a version 
of the Ultimatum Game (UG) where participants alter-
nated between the Responder and Proposer roles. In the 
Proposer role, subjects made offers about how to divide a 
pool of money, and in the Responder role, subjects evalu-
ated the other players' offers. Throughout the experiment, 
subjects continuously changed their Proposer behavior to 
maximize their earnings and achieve a sense of fairness in 
their interactions. Specifically, their Proposer choices were 
informed by both direct learning in previous Proposer 
trials (whether subjects' past offers were accepted or re-
jected) and conformity based on previous Responder trials 
(seeing what offers that others proposed). EEG data were 
recorded to investigate the electrophysiological correlates 
of behavioral change and to test for overlapping or con-
trasting patterns associated with each form of behavioral 
learning. These statistical analyses were made possible by 
the task manipulations of the present study, which, to our 
knowledge, is the first that invoked both direct learning 
and conformity within the same task while circumventing 
the aforementioned challenges. Below, we elaborate on 
the advantages of our methodology and provide relevant 
conceptual details.

1.1  |  Event-related potential research on 
direct learning

The processes underlying direct learning can be cap-
tured, at least in part, by examining how past feedback 
influences a person's future behavior. Pursuing this 
question experimentally often involves using probabil-
istic gambling tasks, where subjects make decisions and 
each choice has some likelihood of yielding a reward or 
loss. These outcomes serve as feedback and inform sub-
sequent choices. Event-related potential (ERP) studies 
using gambling tasks have shown that increased cen-
troparietal P2, P3b, and late positivity (LP) elicited by 
outcome feedback predict that subjects will change their 

 1Conformity is notably distinct from “observational learning”—for 
example, learning how to start a fire from observing another person do 
so. While some early literature used “conformity” and “social/
observational learning” interchangeably (Bandura & Walters, 1977), the 
present report uses “conformity” exclusively to refer to behavioral 
learning based on the social drive to imitate others' behaviors (Bandura 
& Walters, 1977; Shamay-Tsoory et al., 2019), and uses “observational 
learning” exclusively to refer to learning that a given action will lead to 
some outcome based on observing this occur for another person 
(Bellebaum et al., 2010).
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behavior in the next trial (Chase et al., 2011; Donaldson 
et al., 2016; San Martín et al., 2013). In this context, P2 
amplitude is most closely linked to stimulus valence, 
P3b is more often tied to unsigned prediction error, and 
LP potentially plays a role in integrating valence and ex-
pectation violation (Donaldson et al., 2016; Stewardson 
& Sambrook, 2020). Each component warrants inves-
tigation, and together they are thought to reflect the 
integration of information and updating of mental mod-
els (i.e., model-based learning; Eppinger et al., 2017). 
Notably, these earlier studies employed tasks where 
trials included objectively correct/most rewarding op-
tions, which is different from our UG design, in which 
there is no objectively “correct” way to act. Nonetheless, 
all these designs share a fundamental property—they 
prompt subjects to continuously change their behavior 
based on new information. For our design, the lack of 
objectively correct choices allowed us to also test the ef-
fects of conformity, which we will elaborate upon below.

Feedback-related negativity (FRN) and Frontal 
Midline Theta (FMT; 4–8  Hz) are closely related and 
have also played key roles in decision-making re-
search. FRN is sensitive to the outcomes of decisions 
and tracks average gains and losses associated with 
choices. However, in contrast to centroparietal positiv-
ity, FRN often fails to predict changes in subjects' be-
haviors (Chase et al., 2011; San Martín et al., 2013). On 
the other hand, increases in FMT have been associated 
with the recruitment of cognitive control (Cavanagh & 
Frank, 2014) and the ability to predict subsequent be-
havioral change in paradigms such as Go-NoGo, and in 
tasks involving punishment following errors (Cavanagh 
& Shackman, 2015). FMT has received less attention in 
tasks wherein subjects make decisions with probabilis-
tic outcomes, but some results suggest that FMT also 
predicts behavioral change in this area (Mas-Herrero 
& Marco-Pallarés, 2014). Hence, while overall less is 
known about the association between FMT effects and 
behavioral change, this is also a suitable target for the 
present study. Altogether, this earlier research high-
lights that learning is composed of multiple processes 
and that a focus on behavioral change offers a unique 
perspective on its underlying mechanisms.

1.2  |  ERP research on conformity and 
observational learning

The mechanisms underlying behavioral change through 
social observation have been the target of much re-
search (reviewed in Olsson et al., 2020; Shamay-Tsoory 
et al., 2019). Our specific focus here is on conformity 
(the social drive to copy or mimic another person), 

which is typically studied by examining the neural cor-
relates that predict subjects will change their behavior 
to match what they just observed. For example, in one 
commonly used task, subjects are first asked to make an 
opinion-based rating about some topic (e.g., how beau-
tiful a face is). Subjects are then shown other people's 
opinions on the topic, and then later are asked whether 
they would like to change their initial rating. Typically, 
subjects tend to change their rating to mirror the group, 
and increased centroparietal positivity in response to 
seeing the group's opinion predicts subsequent con-
formity (Pierguidi et al., 2019; Wang et al., 2019). 
Paralleling research on direct learning, FRN amplitude 
increases when seeing that another's opinion is different 
from one's own but does not predict changes in opinion 
(Wang et al., 2019). Aside from these similarities with 
results on direct learning, some differences also emerge. 
Specifically, in the context of conformity, increased cen-
troparietal positivity has only been identified for the 
P3b and LP time windows, unlike the results on direct 
learning which also included P2 effects. Moreover, con-
formity is also linked to other effects, such as increased 
centroparietal N2 amplitude (Pierguidi et al., 2019), 
which creates a further disconnect with direct learning 
research.

These differences may be linked to deviations in the 
task design, as the direct learning studies focused on 
subjects maximizing their rewards. This is not the case 
for the conformity tasks. The conscious pursuit of goals, 
such as rewards and fairness, elicits unique neural pro-
cesses, like early centroparietal positivity (Heydari & 
Holroyd, 2016). Hence, these branches of research on 
direct learning and conformity cannot be reliably com-
pared or contrasted from the existing results. Integrating 
them and clarifying the mechanisms underlying behav-
ioral change can be best done using a singular task in 
which both direct learning and conformity are tied to 
goal-related processes such as rewards and fairness. 
Related works have demonstrated that economic games 
are robustly suited for this purpose and can effectively 
evoke both forms of behavioral learning. For example, 
individuals who are punished by others in these games 
adapt to meet other players' expectations, which demon-
strates direct behavioral learning (Herrmann et al., 
2008). Furthermore, when subjects are presented ex-
amples of others' economic behavior, they tend to copy 
what they observed (Chierchia et al., 2020; Sacconi & 
Faillo, 2010), even when it comes at their own expense 
(Bicchieri & Xiao, 2009; FeldmanHall et al., 2018). This 
tendency to mirror the economic behavior of others is 
thought to reflect conformity and is sensitive to manip-
ulations known to upregulate conformity (e.g., placing 
subjects face-to-face with other players; Guazzini et al., 
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2019). Altogether, this earlier research highlights the ef-
fectiveness of economic games for broadly integrating 
different aspects of behavioral learning, but no previous 
study has done this while recording neural data.

As mentioned above, our focus is on mechanisms of 
feedback-based/direct learning and conformity, which 
have not been investigated together in the context of be-
havioral change. However, there is a growing body of 
research dedicated to comparing direct learning and ob-
servational learning (i.e., learning through observation 
but not via a drive to conform). For example, studies 
using probabilistic gambling tasks have probed both by 
having subjects learn a task's structure through making 
decisions or via exposure to the outcomes of others' de-
cisions (Bellebaum & Colosio, 2014; Bellebaum et al., 
2010, 2012). Within these designs, direct and observa-
tional learning led to similar levels of accuracy during 
subsequent trials where learning was tested (Bellebaum 
& Colosio, 2014; Bellebaum et al., 2010, 2012). Adding 
to these similarities, both forms of learning are suscep-
tible to some of the same biases (Peterburs et al., 2021). 
However, this is not always the case (Nicolle et al., 
2011), and differences linked to the effect of personal-
ity on learning have also been found (Rak et al., 2013). 
Further similarities and differences have been identi-
fied at the EEG level. While P3, FRN, and error-related 
negativity are involved in both direct and observational 
learning, their amplitudes and potentially their roles 
have been shown to differ between these two forms of 
learning. FRN is relatively dampened during observa-
tion (Bellebaum et al., 2010; Huberth et al., 2019; Koban 
et al., 2012) and shows weaker learning-related modu-
lation (Bellebaum & Colosio, 2014). Centroparietal pos-
itivity is also decreased or, in some cases, even absent 
during observational learning (Huberth et al., 2019; Rak 
et al., 2013). Functional MRI has uncovered further key 
overlaps and dissociations. The ventromedial prefron-
tal cortex is similarly sensitive to both personal rewards 
and observing others receive rewards. However, the nu-
cleus accumbens shows greater activation for personal 
rewards, whereas the dorsomedial prefrontal cortex and 
posterior superior temporal sulcus are more sensitive to 
others' rewards (Dunne et al., 2016; Morelli et al., 2015). 
Altogether, these results highlight similarities and dif-
ferences between direct and observational learning. 
However, the above studies focused solely on subjects 
observing other's actions then seeing the outcomes, but 
social observation also elicits drives to conform regard-
less of outcomes (Wang et al., 2019).

To achieve a clearer picture of social information pro-
cessing and decision-making, conformity must also be 
accounted for, along with its links to feedback-based learn-
ing. This topic has been investigated to some degree, but 

not in the context of behavioral change. In large part, con-
formity research has targeted error-processing (Wu et al., 
2016). For example, typical studies have involved sub-
jects performing a gambling task, where they attempt to 
maximize their rewards, and a separate social conformity 
task, using opinion-based ratings (Klucharev et al., 2009; 
Levorsen et al., 2021). This work has revealed that both 
direct learning and conformity elicit error signals that are 
processed by overlapping neural regions (Klucharev et al., 
2009), albeit through different neural representations 
(Levorsen et al., 2021). However, it remains unclear how 
these results should be interpreted. In the case of direct 
learning, error signals likely reflect subjects updating their 
perceived values, but, in the case of the conformity-related 
information, errors may represent subjects updating their 
own perceived values or updating their beliefs about oth-
ers. If the latter is true, comparing feedback processing 
and drives to conform in terms of error-related signals 
may not be appropriate. To address these issues, the pres-
ent research uses a single task in which direct learning and 
conformity both influence decision-making with regards 
to a common goal. Additionally, rather than focusing on 
error-processing, we investigated the neural signatures of 
behavioral change.

1.3  |  The present study

Unlike previous research, the present study employed 
a novel version of the UG task to motivate behavioral 
change based on both direct feedback and conformity. 
UG is a two-player economic game wherein one player 
(the Proposer) decides how to split a pot of money ($10 
in this case) with another player (e.g., they may decide to 
take $6 and give the other player $4). After receiving the 
offer, the Responder decides whether to accept or reject 
it. Acceptance causes the money to be distributed as pro-
posed, whereas rejection causes neither player to receive 
any money from the pot. Although it may be expected that 
participants would try to maximize their earnings by ac-
cepting every offer, this is typically not the case—instead, 
participants tend to reject very unequal splits (e.g., $2:$8 
or $1:$9; Oosterbeek et al., 2004). For our study, subjects 
alternated between the Proposer and Responder roles. 
This allowed their Proposer strategies to be influenced by 
both direct (accept vs. reject) feedback from Proposer tri-
als and drives to conform from Responder trials.

Based on the available evidence, we expected to iden-
tify several effects related to behavioral change based on 
direct learning and conformity. Regarding the behavioral 
effects, we expected that subjects would change their 
Proposer behavior based on direct feedback, shifting to-
wards more generous, safe offers after their offers are 
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rejected, and toward more selfish, risky offers after their 
offers are accepted. For conformity, we expected that re-
ceiving relatively generous offers would encourage sub-
jects to propose more generously in the next trial, and 
receiving relatively selfish offers would have the oppo-
site effect. In the ERPs, we expected that increased cen-
troparietal positivity when processing feedback would 
predict that subjects subsequently change their Proposer 
behavior. Similarly, we expected that the centroparietal 
positivity elicited by received offers would also predict a 
subsequent change in Proposer behavior via conformity. 
For both ERP hypotheses, we expected that centroparietal 
positivity would predict behavioral changes at the trial 
level and would also differentiate among subjects who fre-
quently change their behavior versus rarely change their 
behavior. Finally, we also explored event-related spectral 
perturbations and tested whether FMT effects are asso-
ciated with direct behavioral learning and/or conformity 
(Supporting Information: Method 1.5 and Results 2.5).

2   |   METHOD

2.1  |  Participants

A total of 40 subjects from the University of Illinois and the 
surrounding Urbana-Champaign community participated 
in this study (18 to 39 years old, 50% female, MAge = 23.1, 
SDAge = 5.3). Concerning the behavioral aims, this sample 
size is supported by power analyses (α = .05, β = .80, two-
tailed) conducted on an independent sample of pilot sub-
jects who completed the same or a similar version of the 
UG task (N = 15; direct feedback effect: d = 1.82; conform-
ity: d = 0.59), which revealed that 25 subjects would be 
sufficient to identify significant behavioral effects linked 
to both direct feedback and conformity. For the EEG aims, 
power analyses were performed based on the effect sizes 
of prior related studies. Namely, for the within-subject 
ERP hypothesis concerning the link between behavioral 
change and direct feedback, P3 data from Chase et al. (2011; 
t[12] = 4.15, thus d = 1.15) suggested that 9 subjects are 
needed. For the within-subject hypotheses on conform-
ity, P3 data from Wang et al. (2019; F[1, 24] = 7.25, thus 
d = 0.54) suggested that 29 subjects are needed. Finally, 
for the correlations, P3 data from Donaldson et al. (2016; 
r = .39–.48) suggested that between 29 and 46 subjects are 
needed. Our sample size is notably also comparable with 
other similar studies (San Martín et al., 2013) and is con-
sistent with simulation research (Boudewyn et al., 2018), 
which has demonstrated that the centroparietal patterns 
are typically stable and detectable using smaller sample 
sizes than what is needed for other components, such as 
error-related negativity, which are not targeted here. All 

participants were healthy, right-handed, native English 
speakers, and reported no recent history of psychiatric or 
neurological conditions.

One participant was excluded due to falling asleep 
during the experiment, and two participants were ex-
cluded due to malfunctions during EEG recording, which 
resulted in a final set of data from 37 participants. Of these 
participants, some very rarely changed their Proposer 
behavior across the experiment, and hence could not be 
used for comparing trials preceding behavioral Change 
versus No-Change. Specifically, due to low trial numbers 
in three/four participants, respectively, 34 subjects could 
be used for the direct feedback comparison (Change vs. 
No-Change conditions), and 33 could be used for con-
formity comparison (Conformity vs. No-Conformity). 
These rates of attrition are reasonable, as subjects utilize 
different strategies in social-economic games. However, 
all 37 subjects could be used for the correlation analyses 
that link average ERP responses and overall tendencies to 
change behavior frequently versus rarely. All participants 
provided written informed consent under a protocol ap-
proved for use of deception by the Institutional Review 
Board and received payment for their participation. The 
procedures used in this study adhere to the tenets of the 
Declaration of Helsinki.

2.2  |  The UG procedure

Participants played a role-swapping UG task for 384 tri-
als, alternating between the Proposer and Responder 
roles and inputting choices via a keyboard (Figure 1). 
Participants were told that their UG performance would 
influence their monetary payment, but, in reality, all par-
ticipants received equal payment for their participation. 
Consistent with earlier UG studies (Chang & Sanfey, 
2013; Xiang et al., 2013), participants were told (1) that 
they would interact with a large group of other players, (2) 
that they would play with different people between trials, 
and (3) that they should not expect their behavior in one 
trial to impact the other player's behavior in the following 
trial. However, subjects were not told that they were play-
ing with a group of 384 players, as this would not have 
been realistic. This design is suitable to elicit learning, as 
prior research has demonstrated that even when subjects 
are told that they are continuously presented with new 
partners, they still utilize information from past trials to 
inform future decisions (Xiang et al., 2013).

A role-assignment screen at the start of each trial 
informed participants of their current roles. For the 
Proposer role trials, the next screen prompted partici-
pants to decide how to split the $10 pot by choosing from 
five pairs representing the amounts for the Proposer/
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Responder, respectively ($5:$5, $6:$4, $7:$3, $8:$2, or 
$9:$1). Following a delay, subjects were told whether 
their partner accepted/rejected their offer along with the 
trial's earnings. For the Responder role trials, the screen 
after role assignment informed participants of the offer 
amount that they received for that trial. Subjects had to 
evaluate this offer and, in the subsequent screen, select 
from five possible responses (Strongly Reject, Reject, Pass, 
Accept, or Strongly Accept). In terms of the UG trial out-
comes, the Strongly Reject and Reject response options 
were equivalent to one another, and so were the Strongly 
Accept and Accept options. Subjects were told to select 
from among these options based on the degrees of their 
responses, ranging from “somewhat” sure to “extremely” 
sure. The use of five options notably differs from most 
prior UG studies that provide only binary response op-
tions: Accept and Reject. Our protocol used five to ensure 
that subjects had the same number of options for both the 
Proposer and Responder roles and to dissuade subjects 
from moving their hands across trials to make responses. 
Dissociating between Strongly versus non-Strongly re-
sponse options is not the focus of the present report, 
and hence our analyses collapsed Strongly Accept and 
Accept trials into an Accept category, and Strongly Reject 
and Reject trials into a Reject category. Subjects were in-
structed to only select Pass if they were totally unable to 
decide. As expected, the Pass response option was rarely 

chosen (under 2% of trials), and thus did not influence 
the results.

The 192 Proposer trials and 192 Responder trials were 
divided into 8 blocks of 48 trials each, separated by short 
breaks to avoid fatigue. Our focus was on both the effect 
of a Proposer trial on the subsequent Proposer trial (feed-
back processing), and the effect of Responder trials on the 
next Proposer trial (conformity, which is relatively subtle). 
Hence, in 87.5% of trials, subjects alternated between roles, 
playing as Proposer after a Responder trial and vice versa. In 
the other 12.5% of trials, which were interspersed through-
out the blocks, subjects played the same role twice in a row. 
Prior to the experiment, instruction and practice rounds 
ensured that subjects were familiar with the keyboard con-
trols. Subjects were told that they were playing with other 
humans, but in reality, they always played with a computer, 
as is typically done in psychological research using the UG 
(Chang & Sanfey, 2013; Xiang et al., 2013). When the sub-
ject played as a Proposer, the computer was more likely to 
reject lopsided offers. Specifically, the computer rejected of-
fers of $5:$5 in 1% of trials, offers of $4:$6 in 12% of trials, 
offers of $3:$7 in 45% of trials, offers of $2:$8 in 67% of tri-
als, and offers of $1:$9 in 75% of trials. The computers' ac-
cept and reject responses were not influenced by past trials 
and did not follow any pseudo-random sequence. These re-
jection rates emulated human behavior identified in a pilot 
experiment and reflect patterns of behavior reported in the 

F I G U R E  1   Task diagram showing the Ultimatum Game procedure. Subjects switched between playing as Proposers and Responders. 
The associated trials had similar structures, to ensure that participants believed they were playing with another player in the opposite role. 
Proposer trial analyses were time-locked to the “Player Response” screen, and Responder trial analyses were time-locked to the “Offer 
Presentation” screen
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literature (Oosterbeek et al., 2004). When the subject played 
as a Responder, they received offers of $5:$5 in 32% of tri-
als, offers of $4:$6 in 18% of trials, offers of $3:$7 in 17% of 
trials, offers of $2:$8 in 17% of trials, and offers of $1:$9 in 
17% of trials. This distribution was pseudo-randomly deter-
mined prior to the experiment so that in each block partic-
ipants received similar rates of equal, moderately unequal, 
and highly unequal offer amounts. The average of these re-
ceived offers ($3.3:$6.7) was consistent with typical human 
behavior (Oosterbeek et al., 2004).

2.3  |  Analytic strategy

2.3.1  |  EEG preprocessing

EEG data were continuously recorded for each run/
block, at a sampling rate of 2,048 Hz, with a 64-channel 
electrode cap and three EOG electrodes, using a BioSemi 
ActiveTwo System and the ActiView software (BioSemi 
BV, Amsterdam, the Netherlands). EOG channels were 
located at the outer canthi of the left and right eyes and 
below the right eye. Data were processed using the MNE 
Python package (Gramfort et al., 2013, 2014). Data were 
first referenced to Fz (subsequently average referenced be-
fore data analyses—see below), down-sampled to 256 Hz, 
subjected to low-pass finite impulse response filtering at 
30  Hz and high-pass finite impulse response filtering at 
0.1 Hz. Second, artifact rejection and correction were per-
formed using the MNE implementation of Autoreject (Jas 
et al., 2017), a fully automated algorithm that identifies 
outlier electrodes on a trial-by-trial basis by measuring the 
peak-to-peak differences, interpolates electrodes whose 
differences surpass a peak-to-peak amplitude threshold, 
and rejects trials that have an excessive number of interpo-
lated electrodes. AutoReject defines a unique peak-to-peak 
for each subject, using a cross-validation-based method 
(median threshold  =  150  µV, range  =  92–340  µV). This 
procedure excluded 15.4% of trials (see below for the final 
trial counts associated with each condition), and yielded 
a dataset with an average of 4.2 interpolated electrodes 
per included trial. Visual inspection of the trials’ data con-
firmed that the AutoReject consistently identified trials 
containing artifacts (e.g., muscle movements and blinks; 
see below for details on the number of trials remaining fol-
lowing trial rejection). Third, the data were re-referenced 
to an average reference, and the reference used during im-
porting (Fz) was added back to the data, to be able to bet-
ter compare results with prior work in social cognition that 
have also used an average reference (Bailey & Kelly, 2017; 
Kröger et al., 2013; Schmitz et al., 2012). For the analy-
ses below, independent component analysis (ICA) clean-
ing was not performed, given the stability and posterior 

location of the targeted centroparietal effects. However, to 
ensure the robustness of our results, confirmatory analyses 
were performed using a data set that was cleaned via ICA 
(Supporting Information: Method 1.2), and all results were 
replicated (Supporting Information: Results 2.2).

The ERP analysis focused on the P2, P3b, and LP com-
ponents. Amplitudes were measured using the medial 
centroparietal electrodes (C1, Cz, C2, CP1, CPz, CP2), con-
sistent with earlier research on direct learning and con-
formity (Chase et al., 2011; Donaldson et al., 2016; Wang 
et al., 2019). P2 was defined as the mean amplitude of the 
200–300 ms window, P3b as the mean of the 300–500 ms 
window, and LP as the mean of the 500–800 ms window. 
Mean amplitudes were used as this achieves a more sta-
ble measure than peak-based approaches (Clayson et al., 
2013; Keil et al., 2014). Additionally, as we describe below, 
our different conditions contained different numbers of 
trials, which can bias peak measurements but not mean 
amplitude measurements (Clayson et al., 2013; Keil et al., 
2014). These windows are consistent with the timings of 
the components shown by the waveforms. Related liter-
ature contains disagreements with regard to timing cut-
offs (Chase et al., 2011; Donaldson et al., 2016; San Martín 
et al., 2013; Wang et al., 2019), but our definitions broadly 
align with these prior studies. Each of these amplitude 
measures was submitted to the same series of analyses 
described below. Time-frequency decomposition patterns 
were also analyzed to clarify the role of FMT in learning 
(Supporting Information: Method 1.5).

2.3.2  |  Behavioral analysis

Concerning the direct-learning focus, we first tested 
whether acceptances prompt subjects to propose more 
selfishly in the next trial and whether rejections prompt 
subjects to propose more generously in the next trial. We 
calculated subjects' average changes in behavior follow-
ing each form of feedback and submitted these values 
to one-sample t-tests. We next compared the magni-
tudes of each change effect by converting both types of 
change as positive values (i.e., multiplying changes to-
wards selfishness by −1). These values were submitted 
to paired t-tests evaluating whether subjects changed 
their behavior more due to rejection or acceptance. 
Concerning the conformity focus, we compared the ef-
fects of receiving a “high” offer ($4 or more) versus re-
ceiving a “low” offer ($3 or less) on changes in subjects' 
Proposer behavior. Dividing the offers into groups of $5 
and $4 (“high”) versus groups of $3, $2, and $1 (“low”) 
results in the data being split at the median, as subjects 
received $5 in 33% of trials and received each other offer 
in 16.7% of trials (similar to Wei et al., 2013). Splitting 
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at the median maximizes statistical power relative to 
other splits. Psychologically, offers of $5 and $4 are also 
similar in that they are both overwhelmingly accepted 
(Vavra et al., 2018), and both reflect what subjects them-
selves tend to propose most frequently (Oosterbeek 
et al., 2004).

2.3.3  |  EEG analysis

As our focus was on the neural correlates of feedback pro-
cessing that predict changes in subjects' Proposer behav-
ior, our analysis began by identifying trials preceding such 
a change. Specifically, our first within-subject analysis 
concerned the ERP correlates of direct behavioral learn-
ing. The analysis targeted the “Player Response” screen 
(Figure 1), where the subject is informed of whether their 
proposed offer was accepted or rejected. To measure the 
effects of this feedback, we identified the Proposer tri-
als which preceded subjects changing their behavior 
accordingly—that is, trials where subjects proposed more 
generously after rejection or more selfishly after accept-
ance. For example, a Proposer trial[n] where the subject 
proposed $6 and it was accepted would be considered a 
“Change” trial if the subject subsequently proposed $7, 
$8, or $9 in trial[n + 1] or trial[n + 2]. On the other hand, 
it would be considered a “No-Change” trial if the subject 
had subsequently proposed $5 or $6. Note that changes in 
the opposite direction (e.g., proposing more generously 
after acceptances) count as “No-Change,” as they do not 
reflect behavioral learning. This approach utilized all 
proposer trials except for the last one of each block. All of 
the included subjects (N = 34) had high numbers of trials 
in each of these conditions. The “Change” condition was 
associated with an average of 52 artifact-free trials per 
subject, and the “No-Change” condition with 102 clean 
trials. Multilevel logistic regression was performed to as-
sess whether ERP amplitude predicts subsequent Change 
versus No-Change. To ensure that these results were 
not due to other variables which may influence centro-
parietal positivity and behavioral change (e.g., the offer 
amount or the response), the logistic regression models 
controlled for these factors:

Next, to measure whether the effect of ERP ampli-
tude on change was specific to either acceptance or re-
jection feedback, follow-up analyses were conducted 
that included an ERP × Response interaction. A positive 

interaction would reveal that the effect of ERP amplitude 
on behavioral change is strongest following acceptances, 
while a negative interaction would reveal that the effect of 
ERP amplitude is strongest following rejections. This was 
done using the following logistic regression model (the 
random effect covariance structure was slightly simplified 
to avoid convergence errors):

Paralleling these within-subject tests, we performed 
analogous across-subject correlations. Specifically, we 
followed a similar procedure as Donaldson et al. (2016) 
and measured the correlation between subjects' aver-
age likelihood of changing their proposer behavior and 
their average ERP responses across both Change and No-
Change conditions. These analyses could be conducted on 
all 37 subjects. As with the within-subject analyses, a fol-
low-up test was done analyzing only rejected trials, which 
was limited to the set of 34 subjects, as those three who 
rarely changed their behavior also rarely had their offers 
rejected. Finally, again paralleling the within-subject anal-
ysis, a follow-up multiple regression was performed mea-
suring the link between ERP amplitudes and behavioral 
changes, using only accepted trials or only rejected trials.

Our second analysis concerned the ERP correlates of 
conformity. We specifically examined Responder trials, 
and the “Offer Presentation” screen (Figure 1), where sub-
jects are informed of what offer they received. We orga-
nized the trials into “Conformity” versus “No-Conformity” 
conditions based on the offer amount subjects received 
and their subsequent change in behavior. A “Conformity” 
Responder trial was defined as one which preceded a con-
forming change in Proposer behavior. That is, if the subject 
received a low offer ($3 or less) in the current Responder 
trial, and in the next trial changed their Proposer behav-
ior to be more selfish, this is defined as a “Conformity” 
trial. Alternatively, if the subject received a low offer and 
their subsequent Proposer behavior remained unchanged 
or became more generous, this would be defined as a “No-
Conformity” trial. For example, if the subject proposed 
$6 in Proposer trial[n−1] and received an offer of $2 in 
Responder trial[n], then trial[n] would be defined as a 
“Conformity” trial if subjects proposed $7, $8, or $9 upon 
returning to the Proposer role. On the other hand, trial[n] 
would be defined as a “No-Conformity” trial if the subject 
proposed $5 or $6 when they returned to the Proposer role. 
An analogous definition was used for instances where sub-
jects received high offers ($4 or more). These trials were 
defined as “Conformity” trials if they prompted subjects 

Change [n+1] ∼ 1 + ERP [n] +proposed [n]

+ response [n] + proposed [n] ∗ response [n]

+ (1 + ERP [n] +proposed [n]

+ response [n] + proposed [n] ∗ response [n] |Subject)

Change [n+1] ∼ 1 + ERP [n] +response [n] +ERP [n] ∗ response [n]

+proposed [n] + proposed [n] ∗ response [n]

+ (1 + ERP [n] + response [n] + ERP [n] ∗ response [n] |Subject)

+ (1 + proposed [n] + response [n] + proposed [n] ∗ response [n] |Subject)
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to be more generous, and No-Conformity trials if subjects 
did not change or subsequently acted more selfishly. All of 
the included subjects (N = 33) had high numbers of trials 
in each of these conditions. The No-Conformity condi-
tion was associated with an average of 117 trials, and the 
Conformity condition with an average of 47 trials. Similar 
to the analysis of direct behavioral learning, to assess 
whether ERP amplitude predicts conformity, multilevel 
logistic regressions were used:

Controlling for other variables (e.g., the offer amount 
subjects received) was not necessary, as this covariate did 
not influence ERP amplitudes. Also paralleling the anal-
ysis of direct behavioral learning, we performed similar 
across-subject correlations that linked the likelihood of 
conforming to a given offer with subjects' average ERP 
amplitudes across the Conformity and No-Conformity 
conditions.

Finally, to confirm that the centroparietal positivity as-
sociated with the across-subject correlations is indeed a 
signature of learning, and not of other phenomena such 
as task engagement, we performed an analysis measur-
ing the link between change frequency and centroparietal 
amplitude following the “Offer Selection” screen (i.e., a 
screen stimulus which would not be relevant to learning; 
Figure 1). This was expected to yield null results, which 
would provide evidence against the idea that significant 
correlations are linked to individual differences in sub-
jects' levels of task engagement.

2.3.4  |  Alternative EEG analyses

To confirm the robustness of the present findings, additional 
analyses were carried out using alternative statistical proce-
dures, which are reported in the Supporting Information. 
These analyses, in large part, aim to increase consistency 
with earlier research on the neural correlates of behavioral 
change and conformity (Chase et al., 2011; San Martín et al., 
2013; Wang et al., 2019). These include: (a) analyses which 
rely on t-tests and linear regression rather than logistic re-
gression, (b) analyses using data cleaned via ICA, (c) con-
formity analyses that treat offers as continuums rather than 
collapsing them into high ($5, $4) versus low ($3, $2, $1) 
groups, (d) conformity analyses that use alternative group-
ing definitions (e.g., analyses which defined high and low 
relative to subjects' own previously proposed offers), and (e) 
conformity analyses that control for direct feedback effects. 
In every instance, these additional analyses replicated the 
findings reported in the main text.

2.4  |  Software and additional multilevel 
model details

All statistics were performed using R and R Studio (R 
Core Team, 2013). The multilevel regressions were fit 
using the lme4 package (Bates et al., 2014). Models were 
fit using restricted maximum likelihood (REML) and a 
full variance-covariance structure for all of the random 
effects (other than where noted above). Convergence 
errors did not occur. Fixed effect significance was cal-
culated using the lmerTest package, which relies on 
Satterthwaite's degrees of freedom method (Kuznetsova 
et al., 2017). The use of REML and Satterthwaite approx-
imation minimizes the type I error rate (Luke, 2017) 
and adheres to contemporary best practices (Meteyard 
& Davies, 2020). The multilevel regressions reported in 
the main text were all maximal models. That is, they in-
cluded random slopes for each predictor, as this mini-
mizes the type I error rate (Barr et al., 2013; Schielzeth 
& Forstmeier, 2008) and also adheres to contemporary 
best practices (Meteyard & Davies, 2020).

3   |   RESULTS

3.1  |  Behavioral results

The behavioral findings showed the expected direct learn-
ing and conformity patterns. In general, subjects showed 
a high degree of flexibility in their Proposer behavior, and 
no single offer amount was selected in more than half of 
the trials (Figure 2a). Subjects tended to propose more 
generously after their previously proposed offers were re-
jected (t[33] = 10.4, p < .001) and more selfishly after their 
previously proposed offers were accepted (t[33]  =  −7.5, 
p  <  .001; Figure 2b). Direct comparison of these effects 
revealed that the effect of rejection was significantly 
larger than that of acceptance (t[33] = 8.0, p < .001). We 
also found that subjects tended to shift their behavior to 
conform with the offer they just received. They proposed 
more generously after receiving a high offer (t[32] = 2.70, 
p  =  .011) and more selfishly after receiving a low offer 
(t[32] = 2.88, p = .007; Figure 2c).

3.2  |  ERP results

3.2.1  |  Behavioral change due to 
direct feedback

Confirming our first ERP hypothesis, we found that 
increased centroparietal positivity when processing 
the accept versus reject feedback predicted behavioral 

Conformity [n] ∼1 + ERP [n]

+(1 + ERP [n] |Subject)
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change. Specifically, multilevel logistic regressions that 
controlled for other influencing variables—for exam-
ple, the offer amount that subjects proposed and the 
other player's response—revealed that P3b and LP but 
not P2 amplitude predicted behavioral change. That is, 
high P3b and LP predicted that subjects would propose 
more selfishly after acceptance and more generously 
after rejection (P2: Odds Ratio [OR] = .004, p = .24; P3b: 
OR = .011, p = .049; LP: OR = .017, p = .009; Figure 3; 	
Table 1). Next, given that the behavioral results showed 
that rejection had a greater impact on behavioral change 
than acceptance, we tested whether similar patterns exist 
in the ERP data by incorporating an ERP  ×  Response 
interaction as a predictor within the regression. This 
revealed that increased P2 specifically predicted behav-
ioral change after rejection (interaction: OR  =  −.023, 
p  =  .005) but not in general (main effect: OR  =  .006, 
p =  .504). This suggests that the role of P2 was tied to 
negative feedback. On the other hand, while the effects 
of P3b and LP were slightly larger for rejections (inter-
actions: P3b: OR  =  −.016, p  =  .011; LP: OR  =  −.010, 
p = .076 [marginal]), main effects remained significant 
(main effects: P3b: OR = .014, p = .074 [marginal]; LP: 
OR  =  .010, p  =  .010), meaning that P3b and LP play 
a general role for both positive and negative feedback. 
These patterns replicate using analyses that treat cen-
troparietal positivity as the dependent variable rather 
than as a predictor (i.e., linear regressions; Supporting 
Information: Results 2.1). Altogether, these findings 
demonstrate that centroparietal mechanisms play a key 
role in behavioral change, in a manner that is consistent 
with the behavioral findings above.

Additionally, we found analogous across-subject ev-
idence linking centroparietal positivity and behavioral 
change. Namely, subjects who showed increased centro-
parietal positivity also tended to change their behavior 
in response to feedback more often (P2: r = .45, p = .005; 
P3b: r = .42, p = .010; LP: r = .38, p = .021; Figure 4a). This 
effect remains if only considering trials wherein the pro-
posed offer was rejected (P2: r = .45, p = .007; P3b: r = .41, 
p = .015; LP: r = .36, p = .035; Figure 4b). The effect nu-
merically dampens if examining only accepted offers (P2: 
r = .37, p = .026; P3b: r = .31, p = .07; LP: r = .25, p = .13), 
but this is to be expected given the earlier results on re-
jection sensitivity. To confirm that these rejection-based 
results were not due to individual differences in the offer 
amounts that subjects proposed, a multiple regression that 
controlled for this was performed, and the same patterns 
emerged (P2: β [standardized] = .46, p = .009; P3b: β = .42, 
p = .015; LP: β = .38, p = .026). Taken together, these con-
verging pieces of both within- and across-subject evidence 
show that established centroparietal P2, P3b, and LP pat-
terns linked to direct learning also appear within this UG 
context, where fairness norms are relevant. Additionally, 
these findings create a foundation that can be compared to 
correlates of conformity.

3.2.2  |  Conformity results

Confirming our second ERP hypothesis, we found that 
increased centroparietal positivity, when Responder 
subjects processed received offers, predicted conformity-
related changes in their subsequent behavior as Proposer. 

F I G U R E  2   Behavioral (a) change due to both (b) direct feedback and (c) conformity. (a) Histogram shows the likelihood that subjects 
proposed any given amount. (b) After subjects' proposed offers are rejected, they tend to shift toward proposing more generous offers, which 
are less likely to be rejected. After their offers are accepted, they tend to shift toward proposing more selfish offers, which have the potential 
for larger payouts but carry an increased risk of rejection. These shifts are changes in response to feedback and are instances of direct 
behavioral learning. (c) After subjects received offers that were more generous than the median offer ($5 or $4; “high” offers), they tended 
to shift toward proposing more generously. After subjects received offers that were more selfish than the median ($3, $2, or $1; “low” offers) 
they tended to shift toward proposing more selfishly. In both cases, subjects mirror the offer they had just received, and hence this is a form 
of conformity. Error bars represent one standard error above and below the mean. **p < .01; ***p < .001
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Specifically, logistic regression revealed that P2 (OR = 0.02, 
p = .013), P3b (OR = 0.02, p = .018) and LP (OR = 0.02, 
p  =  .022) amplitudes predicted subsequent conformity 
(Figure 5; Table 1). Furthermore, these findings replicate 
using analyses that treat centroparietal positivity as the de-
pendent variable (t-tests; Supporting Information: Results 
2.1) or analyses that use alternative approaches to defining 
conformity (Supporting Information: Results 2.3 and 2.4).

Again, paralleling our approach for direct learning, we 
examined across-subject correlations and found that sub-
jects who showed increased centroparietal positivity upon 

receiving an offer were also more likely to conform to oth-
ers' behavior (P2: r = .37, p = .028; P3b: r = .42, p = .007; 
LP: r = .48, p = .004; Figure 6). This link is also identified 
if we exclude the subjects omitted from the within-subject 
analysis (P2: r = .32, p = .066; P3b: r = .41, p = .017; LP: 
r = .38, p = .028). Next, we confirmed that these across-
subject positivity effects indeed reflect an overlap be-
tween direct behavioral learning and conformity, rather 
than some other aspect of individual differences or sub-
jects' overall levels of task engagement. This was done by 
testing whether subjects' frequencies of changes in their 

T A B L E  1   Increased centroparietal positivity underlies behavioral change prompted by both direct feedback and conformity

P2 P3b LP

Change No-change Change No-change Change No-change

Feedback 3.17 2.89 4.34* 3.53 3.32** 2.33

Only accept 2.63 2.76 3.50 3.26 2.60 2.06

Only reject 4.09 3.56 5.93 5.09 4.88 3.88

Conformity 1.89* 1.61 2.43* 2.06 2.74* 2.21

Only accept 1.85 1.62 2.25 2.15 2.36 2.21

Only reject 2.18 1.91 2.99 2.41 3.46 2.76

Note: The data reflect the waveforms shown in Figures 3 and 5. Significance markings for the bolded rows reflect the primary Change versus No-Change and 
Conformity versus No-Conformity logistic regression results.
For completeness, “only accept” and “only reject” results are included for the conformity analysis, although some conditions (e.g., Conformity-Change + only 
reject) included no trials for one or two participants. These participants were excluded.
* p < .05; ** p < .01.

F I G U R E  3   ERP correlates of direct behavioral learning following proposed offer acceptance versus rejection. Waveforms dissociate 
between Proposer trials where subjects subsequently changed their behavior based on feedback (proposed more selfishly after acceptance 
or more generously after rejection) versus trials where this did not occur (subjects either did not change their behavior or changed it in 
the opposite direction). P2 exclusively predicted behavioral learning after rejections but not after acceptance. P3b and LP showed more 
general effects common to both types of feedback. As our analyses relied on controlling for other variables that may influence the ERP and 
behavioral data—e.g., the offer amount proposed and the offer x response interaction—these covariate effects were removed via subject-
by-subject regressions before plotting. In the Supporting Information, Figure S1 shows the same waveforms based on just the Cz electrode, 
which was representative
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Proposer behavior was correlated with their average cen-
troparietal response to an unrelated Proposer trial task 
screen, which generated the expected null results when 
examining either all trials or just rejected trials (ps > .35). 
In summary, we found that conformity involves centropa-
rietal P2, P3b, and LP, which overlaps with the ERP cor-
relates of direct behavioral learning and suggests common 
neural mechanisms.

4   |   DISCUSSION

The goal of the present study was to investigate the links 
between the neural correlates of direct learning and 

conformity in terms of predicting behavioral change. Our 
novel use of the Ultimatum Game motivated subjects to 
continuously change their behavior based on both direct 
feedback and observations, which prompted conformity. 
This design permitted analyses that were not possible in 
studies separately investigating these types of learning. 
Regarding the behavioral results, subjects changed their 
Proposer behavior in response to feedback and based on 
what they saw their partners propose. Regarding the EEG 
data, first, we found that increased centroparietal positivity 
(P2, P3b, and LP) to direct feedback predicted subsequent 
changes in Proposer behavior. Additionally, subjects who 
showed increased centroparietal positivity to feedback, on 
average, tended to change their behavior more frequently. 

F I G U R E  5   ERP correlates predicting subsequent conformity. Increased centroparietal responses elicited by received offers predicted 
that subjects would subsequently conform their Proposer behavior to this offer. This pattern was present within the P2, P3b, and LP time 
ranges. The waveforms are plotted at a 10 ms resolution

F I G U R E  4   Across-subject patterns linking centroparietal positivity to direct learning. ERP amplitudes are shown as the averages of 
the P2, P3b, and LP components, as similar patterns were generally identified for each one individually. (a) Subjects who show higher 
centroparietal amplitudes when observing whether proposed offers are accepted or rejected tend to change their Proposer behaviors more 
frequently. (b) This direct learning effect is also identified if examining only trials where subjects' proposed offer was rejected
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Second, we found similar patterns linked to conformity. 
Centroparietal positivity when processing others' offers 
predicted that subjects would subsequently conform to 
the other person, and also differentiated among subjects 
who frequently versus rarely conformed to others. In sum, 
centroparietal positivity plays a key role in both direct be-
havioral learning and conformity. This conclusion is sup-
ported by converging evidence from both within-subject 
analyses and across-subject correlations—statistical tests 
which were, notably, independent of one another. We de-
scribe the implications of these findings and how they can 
be integrated with the relevant literature.

The present study adds to the research pointing to 
overlapping neural systems involved in multiple types 
of learning, and it demonstrates that direct feedback and 
conformity drive behavioral change via common mech-
anisms. This focus on behavioral change notably con-
trasts prior decision-making research investigating the 
links between direct learning, observational learning, and 
conformity. This earlier work predominantly focused on 
similarity with regard to error processing, updating deci-
sion values, and learning the task structure (Bellebaum 
et al., 2010; Burke et al., 2010; Klucharev et al., 2009; Wu 
et al., 2016). By focusing instead on centroparietal posi-
tivity and behavioral change, our results add to the depth 
of this close similarity. We specifically found increased 
P2, P3b, and LP amplitudes when processing direct feed-
back or when observing others’ behavior both predict that 
subjects will subsequently change their behavior. These 
findings were highly robust and replicated across a wide 
variety of analytic approaches, including regressions that 
account for both direct learning and conformity in unison 

or regressions that predict behavior change in terms of 
ERP responses modulating the impact of past observa-
tions (Supporting Information: Results 2.1–2.4).

Our findings on direct behavioral learning extend ear-
lier research showing that centroparietal positivity pre-
dicts learning with probabilistic gambling tasks (Chase 
et al., 2011; Donaldson et al., 2016; San Martín et al., 2013). 
However, unlike this previous work, our study focused on 
subjects changing their behavior within a social context, 
where there notably is no objectively correct manner in 
which to act. Hence, our findings demonstrate that cen-
troparietal positivity indexes a general behavioral change 
system that is active across a variety of task structures and 
contexts. To a degree, this is to be expected, given that so-
cial reward processing involves similar neural pathways as 
non-social processing (Behrens et al., 2008; Izuma et al., 
2008). Nonetheless, confirming this point is useful.

Our findings on the mechanisms of conformity pro-
moting behavioral change extend earlier ERP literature 
on conformity, which used opinion-based tasks and sim-
ilarly reported P3b and LP effects (Pierguidi et al., 2019; 
Wang et al., 2020; Yuan et al., 2019). Beyond the ERP liter-
ature, most fMRI studies on conformity have focused on 
error processing—for example, the effects of one's choice 
being different from the group—or to a lesser extent, on 
the neural correlates predicting opinion changes (re-
viewed by Wu et al., 2016). To the best of our knowledge, 
just one prior fMRI study examined behavioral confor-
mity, and it notably found that when subjects processed 
others' behaviors, increased temporoparietal junction 
(TPJ) activity predicted conformity (Wei et al., 2013). As 
the TPJ is thought to be a neural generator of P3b and LP 
(Linden, 2005), these earlier results are consistent with 
our findings. Additionally, because our study also exam-
ined behavioral change motivated by direct feedback and 
demonstrated overlapping effects between the two, this 
speaks to the interpretation of the neural patterns and 
suggests that the theoretical viewpoints used to under-
stand behavioral change due to feedback processing are 
also relevant to understanding conformity. For example, 
identifying overlapping centroparietal positivity effects 
for both feedback processing and conformity may sug-
gest that social conformity involves “context-updating,” 
a theoretical mechanism thought to be indexed by P3b 
(Donchin, 1981; Polich, 2007) and potentially also LP 
(Hajcak & Foti, 2020). As P3b is additionally involved in 
model-based decision-making (Eppinger et al., 2017), this 
may suggest that social conformity operates on model-
based processes. More broadly, this P3b and LP overlap 
suggests that the literature on direct learning may be use-
ful for understanding conformity and vice versa.

Along with the effects identified within those later 
windows, P2 was notably found to predict changes in 

F I G U R E  6   Across-subject patterns linking centroparietal 
positivity to conformity. Subjects who show increased 
centroparietal positivity are more likely to conform to the other 
player's behavior. This result on conformity parallels our earlier 
findings on the neural correlates which predict behavioral change 
due to direct feedback (Figure 4)
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Proposer behavior due to direct feedback processing, 
but only for rejected trials. Identifying this direct behav-
ioral learning role of P2 is consistent with previous work 
(Donaldson et al., 2016; San Martín et al., 2013). However, 
its specific association with rejected trials is somewhat 
surprising, given that positivity within this time range 
is thought to be associated with rewarding outcomes 
(“Reward positivity”; Donaldson et al., 2016; Heydari & 
Holroyd, 2016). This “reward positivity” interpretation is 
not universally supported, as some authors have identi-
fied similar P2  sensitivity with gains versus losses (San 
Martín et al., 2013) or increased P2 sensitivity with losses 
(Martinez-Selva et al., 2019; Schuermann et al., 2012), al-
though these latter findings are exceptional cases.

The link between offer rejection and P2 amplitude may 
be explained by our task's social-fairness aspect: when 
subjects' proposed offers are rejected, they may believe 
that the other player is being unfair. Unfairness can elicit 
anger (Pillutla & Murnighan, 1996), which enhances early 
centroparietal positivity (Angus et al., 2015; Tsypes et al., 
2019) and may encourage behavioral change (Lench et al., 
2016). Anger could also explain why a P2 effect was iden-
tified in our experiment, but not in the earlier studies of 
conformity that did not involve sensitive topics such as 
fairness (Pierguidi et al., 2019; Wang et al., 2019)—that 
is, receiving a selfish offer would elicit anger, which in 
turn prompts subjects to propose selfishly themselves. 
Alternatively, if P2 reflects reward positivity in this case, 
that may also explain why we found P2 involvement in 
conformity. Subjects are more likely to change their behav-
ior to match others if they feel a sense of gratitude (Valk 
et al., 2017), and thus increased P2 amplitude may reflect 
positive emotional responses promoting conformity.

4.1  |  Caveats

First, further clarification is needed as to whether the cen-
troparietal effects should be interpreted as a single large 
component or three separate ones (P2, P3b, and LP). 
Although the present findings point to possible specificity 
regarding P2 differences between learning in response to 
negative feedback (reject) versus positive feedback (accept), 
further research is needed to clarify this dissociation. It is 
known that subjects perceive avoiding losses as being more 
important than acquiring gains (Tversky & Kahneman, 
1992), and some previous research has corrected for this by 
having losses be in smaller quantities (e.g., gains as +1,250 
points and losses as −625 points; Tunison et al., 2019), but 
this was not possible within the current task. Hence, it is 
unclear whether perceived value or gaining versus losing it-
self is responsible for the P2 dissociation between accepted 
versus rejected trials. Concerning the correlation findings, 

our interpretation is that they reflect subjects' overall learn-
ing tendencies. However, levels of task engagement could 
potentially confound these results, as engagement could 
simply upregulate both centroparietal amplitude and behav-
ioral change. Although our correlation analyses of the non-
learning screens provide evidence against this alternative 
explanation, future research would benefit from designs that 
similarly rule out other alternative possible explanations.

5   |   CONCLUSION

In summary, we investigated the neural processes associ-
ated with behavioral change motivated by direct feedback 
and conformity using a novel role-swapping UG task. This 
allowed subjects to change their behavior in response to 
both types of learning events. We found overlapping centro-
parietal positivity effects associated with behavioral changes 
in response to both direct feedback and from a drive to con-
form to others' behaviors. These overlapping robust effects 
spanned the P2, P3b, and LP time windows. Moreover, 
exploratory analyses identified FMT effects, which exclu-
sively predicted behavioral change in response to direct 
feedback but not conformity (see Supporting Information: 
Discussion). Taken together, our results shed light on how 
computational systems involved in direct behavioral learn-
ing may be repurposed for learning via social information. 
Additionally, our results suggest that past findings on di-
rect learning are likely to be relevant for understanding 
conformity and vice versa. Overall, these findings suggest 
that future studies on learning would benefit from describ-
ing how both forms can emerge out of a single overarching 
framework rather than addressing the two in isolation.
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FIGURE S1 ERP correlates of Change versus No-
Change based on just Cz. Waveforms dissociate between 
Proposer trials where subjects subsequently changed 
their behavior in accordance with feedback versus 
trials where this did not occur. The data reflects the 
exact same conditions and procedure as Figure 3, in 
the main text, but the waveforms are now based on just 
the Cz electrode data, rather than on the average of a 
centroparietal cluster
FIGURE S2 Topographic plots showing that frontal 
midline theta is linked to direct learning but not 
conformity. All topographic plots reflect the average of 
the 4–8 Hz theta range and the 200–300 ms time window. 
The topographic plots are shown for: (a) Change Proposer 
trials, (b) Conformity Responder trials, (c) No-Change 
Proposer trials, and (d) Non-Conformity Responder trials. 
(e) When seeing whether a proposed offer was accepted or 
rejected (feedback), increased FMT predicted that subjects 
would subsequently change their behavior. Red circles 
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indicate frontal electrodes showing significant differences 
(p < .05, two-tailed) between the change versus no-change 
conditions and also showing significant Change  ×  Type 
interactions. Interestingly, significant differences were also 
identified in posterior locations, corresponding to electrodes 
O2 and PO8. (f) Finally, no significant differences linked to 
conformity were found for any electrode
FIGURE S3 Spectrograms showing that frontal midline 
theta is linked to direct learning but not conformity. (a) 
When seeing whether a proposed offer was accepted 
or rejected (feedback), increased FMT predicted that 
subjects would subsequently change their behavior. 
(b) On the other hand, when subjects received an offer, 
no meaningful FMT patterns were found, linked to 
conformity. Power was averaged across the F1, Fz, and F2 

electrodes. Dark red areas indicate time-frequency bins 
associated with significant learning effects (p < .05, two-
tailed). The dashed white rectangles show the window 
used for the t-tests reported in the text
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