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Abstract 

A psychology paper’s p-values say a lot about how its studies were conducted and whether its 

results are likely to replicate. Examining p-values across the entire literature can, in turn, shed 

light on the state of psychology overall and how it has changed since the start of the replication 

crisis. The present research investigates strong (p < .01) and weak (.01 ≤ p < .05) p-values 

reported across 240,398 empirical psychology articles from 2004-2024. Over this period and 

across every subdiscipline, the typical study has begun reporting markedly stronger p-values. 

Nowadays, papers reporting strong p-values are also more often published in top journals and 

receive more citations. Yet, it also appears that robust research is still not correspondingly linked 

to career success, as researchers at the highest-ranked universities tend to publish papers with the 

weakest p-values. Investigating language usage suggests that two-thirds of this association can 

be explained by highly ranked universities preferring laborious, expensive, and subtle research 

topics, even though these generally produce weaker results. Altogether, these findings point to 

the strength of most contemporary psychological research and suggest academic incentives have 

begun to promote such research. However, there remain key questions about the extent to which 

robustness is truly valued compared to other research aspects. 

Keywords: Meta-science, replicability, text mining, open science 
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1. One Decade Into the Replication Crisis, How Have Psychological Results Changed? 

The replication crisis revealed that many of psychology’s seminal studies do not replicate 

(Doyen et al., 2012; Open Science Collaboration, 2015). Alongside these replication failures, 

countless methodological papers discussed the prevalence of questionable research practices and 

how such practices led to non-replicable findings (Francis, 2012; John et al., 2012; Simmons et 

al., 2011; Wagenmakers et al., 2011). In turn, new scientific standards were proposed (Hales et 

al., 2019; Nosek & Lakens, 2014; Schimmack, 2012; Simmons et al., 2012; Van’t Veer & Giner-

Sorolla, 2016). It has been a decade since the replication crisis reached widespread awareness. 

Has the subsequent push for replicability produced meaningful changes? The present research 

investigates this question and current state of psychological science from different angles. 

Some aspects of replicability can be studied by examining the strength of a paper’s p-

values (Krawczyk, 2015; Lakens, 2015; Van Assen et al., 2015). For instance, it is problematic if 

a paper frequently reports p-values that barely fall under significance thresholds (.01 ≤ p ≤ .05). 

Even in a study with merely 50% power, most p-values should fall under .01, and in studies with 

80% power, just 26% of significant results should land in this .01 ≤ p ≤ .05 interval (per 

simulations). If such p-values are instead commonplace, this points to questionable research 

practices (Simonsohn et al., 2014). One prior study of 103 replication attempts indeed found a 

74% replication rate for findings reported at p ≤ .005 and a 28% replication rate for findings at 

.005 < p < .05 (Gordon et al., 2021). P-values can be extremely informative. 

The present research tracks p-values across the whole of psychology and how reported p-

values may have shifted since the replication crisis began to percolate. Prior meta-analyses have 

operated on smaller scales, focusing on just narrower topics, restricted pools of journals, or 

limited time ranges (Boggero et al., 2017; Stuart et al., 2019; Vadillo et al., 2016; Olsson-

Collentine et al., 2019; Pritschet et al., 2016; Schimmack, 2020; Youyou et al., 2023). The 
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present research, instead, uses an original dataset that extends from 2004 to 2024 and is the 

largest of its kind, covering most of the non-predatory psychology literature. This expansive size 

opens the door to new and more comprehensive inquiries. 

 Along with investigating how p-values have changed over time, the present study 

leverages p-values to inspect the value structure of academic psychology. Discussions of 

incentives are part and parcel of replication crisis commentary (Asendorpf et al., 2013; Nosek et 

al., 2012, 2022). At the most basic level, loosening standards for replicability may increase the 

quantity of research output and its perceived innovativeness. In turn, looser standards may 

produce papers that are published in higher-ranked journals and accumulate more citations, 

which may ultimately allow authors to achieve more prestigious university positions. 

Alternatively, if academic psychology emphasizes robust results, the opposite may be the case, 

where even a researcher acting purely in self-interest would benefit from practicing replicable 

science. Creating this type of incentive structure has been described as an important end goal of 

the replicability movement (Nosek et al., 2022).  

To better understand these issues, the present research probes p-values. Analyses focused 

on the percentage of papers’ significant p-values (ps < .05) that that are “fragile” (.01 ≤ p < .05), 

narrowly crossing the typical threshold for significance. After validating that this percentage 

predicts replicability, the measure was used to investigate three sets of questions: First, since the 

replication crisis began, has psychology begun to publish statistically stronger results? Second, 

does contemporary psychology incentive strong results – i.e., do papers reporting strong p-values 

find publication in higher-impact journals, accrue more citations, and are its authors affiliated 

with top-ranked universities? Third, to contextualize findings on the first two questions, how 

may p-value strengths and these incentives relate to the research topics, hypotheses, and 

methodology used by different papers? 
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2. Materials and Methods 

2.1. Disclosures 

The present research was not preregistered. The number of papers acquired was designed 

to be as large as possible while respecting publishers’ terms and conditions. Before collecting the 

full dataset, some preliminary analyses were done using a subset of the data, which are not 

reported – e.g., attempting to study researchers moving between universities or investigating 

national gross domestic product as a predictor of p-values. Given the exploratory nature of the 

present research, a threshold of α = .001 was employed for analyses by default; this did not  

apply to tests that formally implemented multiple comparison correction, which still used 

pcorrected < .05. This research was exempt from approval by the local institutional review board. 

2.2. Data collection 

The original dataset generation procedure is shown in Figure 1 along with descriptive 

stats of the final dataset. To generate an initial list of possibly usable articles, metadata were 

downloaded from Lens.org, which is a free online platform that attempts to compile information 

on all scholarly records. The database contained 643,571 records from psychology journals 

between 2004 and 2024 among publishers amenable to downloading full-text articles (Elsevier, 

SAGE Publications, Springer-Nature, Wiley, and Frontiers). The lower bound was 2004 because 

before then, few journals published web versions of full-text articles (PDFs were not included in 

this dataset). This pool was pruned to 372,633 empirical papers by searching only for records 

containing a Results section published in journals that regularly publish empirical papers. Of 

articles in this pool, at least one p-value was extracted for 269,018 papers (72.2%). For the 

analysis, this pool was further pruned to 240,355 articles containing at least two significant p-

values, as the focus was on significant results and requiring two p-values avoided papers simply 

mentioning a threshold off-hand (e.g., “p < .05”). Among these papers, journal scores (see 
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below) were not available for 16,796 papers, and no university affiliation was found for 79,298 

papers. For analyses engaging with all these variables simultaneously, the fully usable dataset 

consisted of 150,344 papers, spanning 384 journals and containing 16.8 p-values on average (SD 

= 14.8, median = 13 p-values). Supplemental Materials 1 provides additional details on dataset 

collection and organization. 

 

Figure 1. Summary of the organized dataset. A. Flow diagram showing how the final dataset 

was built over several stages. B. A stacked plot showing the number of articles collected each 

year from each psychology subject area; papers from journals with two or three areas contributed 

to both counts but were weighted 0.5 or 0.33, as primary aim is to report the overall number of 

papers; papers from 2024 were excluded because this year was only collected up to August; C. a 

histogram of how many p-values each paper contained; D. a breakdown of the percentage of p-

values each year falling in different significance ranges; E. a histogram of how many citations 

each paper received per year since publication; F. a plot of each university’s Times Higher 

Education ranking and its associated research score; universities were colored to denote ones that 

were found in the dataset. Dev. & Edu., Developmental and educational psychology; Exp. & 

Cog., Experimental and cognitive psychology. 
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2.3. Analysis overview  

Retrieved papers were downloaded as HTML/XTML files. The papers were parsed, and 

p-values were extracted. Variables related to incentives were gathered (journal reputation, 

citation counts, university ranking). Then, after several validation tests were conducted, three 

main branches of analysis were done: (a) examining changes in psychological results over time 

by plotting temporal trends in p-values and other variables, (b) examining the link between p-

values and SNIP, citations, and university ranking, and (c) analyzing how these variables relate 

to research topics and methodology by tracking papers’ word usages. The organized dataset 

(https://osf.io/mxs47/) and code (https://github.com/paulcbogdan/PsychChange) have been 

uploaded to public repositories. 

2.4. P-value and statistic extraction 

2.4.1. P-value extraction 

After stripping papers down to their Results section (Supplemental Materials 2), omitting 

captions, and removing formatting, p-values were extracted with the following regular 

expression: 

[whitespace/parentheses/bracket][p][whitespace/null][sign] 

[whitespace/null][leading zero][whitespace/null][number] 

Details on the expression and its components are provided in Supplemental Materials 3. After p-

value extraction, the proportion of significant p-values falling in the fragile range was calculated 

for each paper, as the number of p-values between .01 and .05 inclusive (.01 ≤ p < .05) divided 

by the number of p-values of .05 or lower (p < .05). The analysis focused only on p-values 

reported with equal (“=”) or less-than (“<” or “≤”) signs. “≤” was treated as “<”. The main 

analyses did not distinguish one versus two-tailed analyses, but this matter is explored in 

https://osf.io/mxs47/
https://github.com/paulcbogdan/PsychChange
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Supplemental Materials 5.2, and although the main text focuses on significant results, trends 

related to insignificant results are described in Supplemental Materials 6. 

2.4.2. Statistic extraction 

In addition to p-values, measures describing other outputs of statistical tests were also 

extracted and assigned to a nearby p-value. The test-statistic extraction procedure is described in 

Supplemental Materials 4. Test statistics (t-values, F-values, chi-square scores, r-values, and z-

scores) with complete degrees of freedom were extracted for 1,398,189 p-values (35.8%) along 

with many extracted without degrees of freedom (using the 240,398 paper pool).  

2.4.3. P-value survey 

Because papers differ in how they report p-values, a survey was performed, and a 

taxonomy of reporting styles was developed. For instance, some papers follow the American 

Psychological Association (APA) style (reporting exact p-values unless p < .001), some papers 

report a mix of inequalities (e.g., “p < .05”, “p < .01”, and “p < .001”), and some other papers 

only report significance as a binary (always “p < .05”). A survey of how many papers fall into 

these and other categories is described in Supplemental Materials 5. The only papers that are 

problematic for the present analyses are the 2.3% of papers that exclusively report “p < .05” for 

significant results. For these papers, their fragile p-value percentage was recomputed based on 

the p-values implied by nearby test statistics if available. For “p < .05” papers that did not report 

any test statistics, their fragile p-value percentage was set at 51%, which was the mean of among 

the “p < .05” papers that reported test statistics. Supplemental Materials 5 elaborates upon this 

and discusses the mild degree of underreporting p-value more generally. To ensure that the 

present conclusions do not hinge on reporting-style phenomena, tests were also done using p-

values implied from test statistics (Supplemental Materials 13). 
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2.5. Validation 

 Dataset validation was performed in three ways (Supplemental Materials 7). First, a 

relatively small pool of 40 papers marked as having at least one p-value were manually 

inspected. In every case, the present approach identified every p-value, properly accounting for 

different reporting styles and omitting non-Results sections and captions. Second, extracted exact 

(“=”) p-values were cross-checked with the p-values implied from nearby test statistics, which 

produced a tight correlation (r = .97), verifying the accuracy of the p-values at a wide scale. 

Third, data on 113 replication attempts was downloaded, and analyses were performed 

demonstrating that a paper’s fragile p-value percentage strongly predicts its chance of replicating 

(63.7% cross-validated accuracy).  

2.6. Incentives variables 

Each paper was assigned variables representing the three incentives of interest: (i) its 

journal’s yearly Source Normalized Impact Performance (SNIP), which is a score similar to a 

traditional impact factor but normalized by the number of citations typically received by papers 

in the same discipline (Moed, 2010), (ii) a log-transformed and year-normalized citation score, 

and (iii) the Times Higher Education 2024 World University Ranking research score assigned to 

the most commonly listed university on the paper (frequency ties broken randomly). The 

collection and organization of these variables are described in Supplemental Materials 8. 

Additionally, for the university ranking measure, Supplemental Materials 9 discusses alternative 

ways of assigning one score to each paper (e.g., averaging across schools), although the main 

text conclusions do not change regardless of how this is done. 

2.7. Multilevel regression analysis 

Each paper was submitted to three multilevel regressions that (i) used fragile p-value 

percentages to predict SNIP, (ii) used fragile p-value percentages to predict citations while 
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controlling for SNIP, or (iii) used the authors’ university ranking scores to predict fragile p-value 

percentages. The multilevel regressions’ structures are detailed in Supplemental Materials 10. 

To investigate some of the factors that could bias the regression analysis, several further 

analyses were done probing other variables that may be relevant. These additional tests covered: 

(1) whether it is more meaningful to examine the total number of fragile p-values rather than the 

percentage, (2) whether authors’ ages could be a confound, (3) whether papers containing 

Results section(s) but no p-values could bias the analysis, and (4) whether papers using Bayesian 

or machine learning methods could bias the analysis. These tests are all reported in Supplemental 

Materials 11, and none showed patterns challenging the conclusions below. 

2.8. Language analysis 

Text analyses were performed on the sentences preceding each reported p-value (details 

on sentence extraction in Supplemental Materials 12.1). For each paper, the scripts attempted to 

extract one sentence for each significant p-value. Then, for the 2500 most common words, 

papers were assigned normalized word usage scores; computed by counting how many times a 

word appeared among the paper’s sentences and dividing by the total number of words across all 

the paper’s sentences. For each of the 2500 most common words, a separate linear regression 

was fit predicting the word’s usage score based on the paper’s fragile p-values percentage, e.g., 

normed_usage[“the”] ~ 1 + p fragile percentage 

The identification of 2500 words and the regressions were done four times, separately for 

sentences reporting t-values, F-values, chi-square values, or correlation coefficients/betas (see 

the quantity of each in Supplemental Materials 12.2). Using data associated with all p-values, 

irrespective of nearby test statistics, further regressions were also tested which added the year, 

SNIP, citation, or ranking score as predictors, e.g., 

normed_usage[“the”] ~ 1 + p_fragile_percentage + ranking score 
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Although not formally tested, overlapping associations between word usage and two other 

variables would notably point to statistical mediation (e.g., ranking → word → p-values or 

ranking → p-values → word); see Bogdan, Cervantes, and Regenwetter (2023) for discussion 

and intuition on the close link between mediation, multivariate distributions, and overlapping in 

variable patterns. 

3. Results 

3.1. Fragile p-values have declined over time 

From before the replication crisis (2004-2011) to today (2024), the overall percentage of 

significant p-values in the “fragile” range has dropped from 32% to nearly 26% (Figure 2A). 

This matches the percentage of fragile p-values expected from studies with 80% power (see the 

dashed lines in Figure 2). A similar trend emerges if the focus is instead placed on the p-values 

implied papers’ test statistics (Figure 2B). Interestingly, the fragile percentage for implied p-

values is usually 2-4% lower than the percentage calculated with reported p-values. This partly 

reflects a selection effect between papers that report versus do not report test statistics (furthered 

probed in Supplemental Materials 13.2). Regardless, the data overall shows fragile p-value rates 

markedly decreasing over time.  
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Figure 2. Changes in fragile p-values over time. A. The mean fragile p-value percentage for 

each subfield and year was calculated. Papers were assigned to specific subfields based on their 

journal’s Scopus classification. Papers in journals associated with two or three subfields 

contributed to each subfield’s plot (contributed in full, not weighed by a half or third). A 

correction, subtracting 2.3% from the fragile p-value percentage, has been applied to account for 

papers underreporting the strength of results (e.g., reporting “p < .05” unnecessarily); see 

Supplemental Materials 5.1. The dashed line at 26% is a reference showing the fragile p-value 

rates expected from studies with 80% power and α = .05. B. Mean fragile percentage, calculated 

using p-values implied from nearby test statistics. Shaded regions represent ± 1 standard error. 

Examining the distribution of fragile p-values more precisely suggests that these 

aggregate shifts derive from the average study reporting fewer fragile p-values (Figure 3); see 

how the histogram averages steadily shift leftward over time. However, as the right tails of 

Figure 3 show, there remain many studies publishing weak p-values. This deserves consideration 

despite the overall trend toward fewer fragile findings. 

 

Figure 3. Year-wise ridgeplots for different subfields. Each column is a series of density plots 

generated independently for each of the six psychology subfields. Each density plot represents 

the data for two years (e.g., “2004-” corresponds to 2004 & 2015). These year labels are placed 

at the average of each histogram. 

The drop in fragile p-values may be driven by increases in statistical power. The median 

sample size has substantially increased over time (Figure 4A). Among studies reporting t-values 
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(55,342 papers), larger samples predict lower p-value percentages (paper-by-paper Spearman 

correlation: ρ = -.22, p < .0001). Effect sizes are also relevant to power, but their relationship to 

fragile p-values is more ambiguous. Reported effect sizes have generally dropped over time 

(Figure 4B) and this may reflect effect size estimates becoming more accurate as larger samples 

are used; endorsing this idea, the median reported Cohen’s d is strongly negatively correlated 

with sample sizes (ρ = -.68, p < .0001). In turn, the correlation between Cohen’s d and the fragile 

percentage is weak (ρ = -.13, p < .0001). Regardless, the sample size trends make a strong case 

that increases in statistical power may partially underlie the move away from fragile results. 

 

Figure 4. Changes in sample sizes and effect sizes over time. A. Median of the median sample 

size used for studies’ t-tests, calculated from t-test degrees of freedom of significant results. B. 

Median of the median Cohen’s d of studies’ significant t-tests, calculated by dividing t-values 

with the square root of the sample size. Shaded regions represent ± 1 standard error. 

3.2. Fragile p-values and incentives 

 To assess the relationship between fragile p-values and academic psychology’s 

incentives, multilevel regressions were tested linking papers’ fragile p-value percentages with (i) 

its journal’s SNIP/normalized-impact-factor, (ii) the paper’s log-transformed year-standardized 
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citation count, and (iii) the university rankings of its authors. For each test, the regression 

included interactions with Year to capture whether any relationship changed over time. 

All three variables representing academic psychology’s incentives were linked to fragile 

p-values in some way. Fragile p-values did not significantly predict SNIP (β = -.004 [-.009, 

.001], B = -.009, p = .14; Figure 5A)1 but yielded a significant fragile p-value x Year interaction 

effect on SNIP (β = -.009 [-.010, -.008], B = -.0039, p < .0001. In other words, more esteemed 

journals have historically published papers with weaker results, but nowadays top journals 

mostly publish strong findings. On top of this journal effect, papers with fewer fragile p-values 

also receive more citations (β = -.036 [-.044, -.028], B = -.13, p < .0001; Figure 5B). Further, an 

interaction with Year suggests the inverse link between fragile p-values and citations has grown 

since the replication crisis’ start (β = -.011 [-.016, -.006], B = -.008, p < .0001). Overall, these 

results point to important growth in the standards used to evaluate research. Yet, bucking these 

optimistic trends, it is also the case that papers from higher-ranked universities tend to have more 

fragile p-values (β = .016 [.009, .025], B = .00018, p = .0005; Figure 5C), and a null interaction 

with Year shows that this link between fragile p-values and rankings has not significantly 

changed over time (β =-.004 [-.001, .010], B = -.00001, p = .09). Hence, the findings on these 

three incentive variables altogether paint a mixed picture.  

 
1 β and B refer to standardized and unstandardized coefficients, respectively. 
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Figure 5. Links between p-values and academic values/incentives. A. Bars represent the 

citations per year received by recent papers (2020-2024), depending on their fragile p-value 

percentage. Although the main text analyses use a log-transformed and year-standardized 

measure of citations, these have been reverted here back to a more interpretable quantity 

(citations per year). This measure was averaged for each year and then averaged across years; 

SNIP was not controlled for. B. Scatterplot represents each journal’s mean fragile p-value 

percentage and mean SNIP from 2020-2024. Journals with two areas are colored with both. Four 

journals had 3 or more areas, and for those, two areas were selected randomly. Journals with 

fewer than 10 papers with p-values and journals with an unreliable fragile p-value percentage 

measure (standard error .04) were excluded. A Spearman correlation is reported. C. Scatterplot 

represents each university’s mean fragile p-value percentage and its Times Higher Education 

2024 ranking. The whole 2004-2024 period was used to ensure an adaquete sample size with the 

effect of year on fragile p-values regressed out. Rankings are used for the x-axis rather than 

research score because rankings were expected to be more intuitive. Universities with fewer than 

10 papers with p-values or with an unreliable fragile p-value measure (standard error over .04) 

were excluded. Dots are colored based on a university’s region. “Anglo” refers the United States, 

United Kingdom, Canada, Australia, and New Zealand. This regional organization was designed 

to avoid overly small or large groups but may ignore heterogeneity within the divisions.  
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3.3. Topics and methodologies linked to fragile p-values 

 The final analysis examined word usage to enhance the interpretation of the p-value 

findings thus far. Figure 6 shows the results of 10,000 independent regressions, examining how 

papers’ fragile p-value percentages predict 2500 different words’ usages. For example, the red 

word “completer” in the bottom-left corner of Figure 6 indicates that papers reporting fragile p-

values for t-tests are more likely to also use the word “completer” near those t-tests (this term 

refers to clinical intervention research). To cover a wide range of statistical approaches, this 

word analysis was done separately for results associated with different test statistics. This yielded 

many patterns. Words tied to often criticized psychological topics lay near the bottom of these 

lists, like “[social] priming” and “genotype”. Topics where data recruitment is expensive also 

stand out, particularly topics related to clinical, developmental, and/or biological psychology, 

such as “infant”, “ASD [autism spectrum disorder]”, “intervention”, “pupil”, “cortisol”, 

“amplitude”, and “gyrus”. In addition, many words linked to weak p-values reference analytic 

approaches offering low power or permitting many degrees of freedom: “between[-]group 

[analysis]”, “moderated”, “ANCOVA”, “left” vs. “right” “hemisphere” differences, or “sex” 

effects. Interestingly, among the predictors of strong p-values, few words pertain to scientific 

topics but instead predominantly concern methods – e.g., “multivariate”, “hierarchical”, 

“validity” or “repeated[-]measures”. Altogether, these results begin to illustrate the literature 

producing strong or weak p-values. 
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Figure 6. Words linked with strong (blue) or weak (red) p-values. Across 2500 words and 4 

statistic types, 10,000 regressions were fit, attempting to predict each word’s usage based on 

papers’ fragile p-value percentages. Bars represent the standardized coefficient of the fragile-p-

value predictor divided by a word’s baseline frequency. Every listed word was significant 

following correction at a family-wise error level (pFWE < .05) across families of 2500 tests 

(correction applied separately for each test statistic). Correction used the Holm-Sidak method, 

which is similar to Bonferroni correction. Words mentioned in the main text (e.g., “completer”) 

are colored black in the figure for emphasis. 

To shed light on the association between papers’ fragile p-values and their authors’ 

universities’ rankings, further regressions were tested. Among the links to academic incentives 

shown earlier (Figure 5), the link to university rankings deserves this additional special focus 

because it implies a disconnect where academic incentives do not promote strong results. To help 

unpack this university effect, the present analyses regressed each word’s usage on a paper’s 

fragile p-value percentage along with its university ranking score (examining p-values across t-

tests, F-tests, etc.). Then, the conjunction was taken between words yielding positive associations 

with both predictors. These words are listed in Table 1 – e.g., the word “abstinence” here 

indicates that (i) this word is often used to describe results with fragile p-values, and (ii) this 

word is also often used by authors from highly ranked universities. This analysis can also be 

performed with respect to negative associations and for other variables (Year, citations, SNIP), 

and those overlaps are reported in Supplemental Tables S2-12. In the present section, the focus is 

solely on words linked to higher rates of fragile p-values and higher-ranking university papers. 

 

 



19 
 

Words linked more fragile p-values and to higher-ranked universities  

abstinence twotailed looked HIV unadjusted verb choose 

chose successfully saw arm infant drug HAMD 

driven looking bar binomial provider motivated multivariate 

completer look remission window responder experiment. MDD 

reliable money novel connectivity speech adjusting trial 

late tau joint toddler days visit primed 

exact label unexpected antidepressant brain give implicit 

race her attended lifetime activation cause cortisol 

relative pupil likely week bilingual stories placebo 

priming bipolar continued earlier versus object volume 

familiar medication minority onset caregivers baseline learned 

prior BDI caregiver depressed children offer attendance 

subject longer day assigned attempt whose reduction 

took odds received spatial month condition they 

less choice prime vocabulary participant smoking expressed 

history later memory treatment temporal disorder making 

receiving reduced interacted pair exposure either fewer 

report course end region preference read episode 

greater remained planned more ethnicity consistent faster 

who care bias did early outcome event 

without completed left larger any cue such 

slower during within those diagnosis decreased logistic 

patient than rate times younger increased neutral 

sensitivity experienced individual response contrast compared made 

session mothers qualified partner problem their when 

face child having but use associated reported 

number symptom controlling age lower after change 

among not main significant time with interaction 

Table 1. Words positively associated with fragile p-values and with higher-ranked universities. For 2500 

words, 2500 regressions were fit. Each regression attempted to predict one word’s usage based on the paper’s 

fragile p-value percentage and the paper’s university ranking score (word usage ~ 1 + fragile p-value 
percentage + ranking). Per the regression coefficients, every word listed here is both used significantly more 

by authors from highly ranked universities and is positively associated with fragile p-values. Because the 

analysis here requires overlaps in significance across the two predictors, the requirements for significance were 

loosened to use false-discovery rate correction (pFDR < .05), unlike the family-wise correction used for Figure 6 

(Benjamini & Hochberg, 1995).  

 Top institutions often study special populations, such as “HIV” patients, major depressive 

disorder (“MDD”) patients along with “caregivers” and smokers (“abstinence” & “smoking”). 

Along with being clinically oriented, top-ranked institutions emphasize biology, focusing on 

medication (“antidepressant”), hormones (“cortisol”), and neural “activation” or “tau”. In this 

type of research, achieving high statistical power can be challenging. Beyond biological and 

clinical psychology, Table 1 more generally suggests that top-ranked institutions are interested in 
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expensive behavioral work and subtle mechanisms. For instance, the terms “day” and “week” 

emerge, which refer to multi-session studies. Such studies are difficult to run via online 

platforms and can be much more labor-intensive than single-session research. “Looked” is tied to 

eye-tracking research, which requires costly equipment. “Choose” and “money” point 

specifically to behavioral economics and decision-making research, which can be difficult to run 

online in a convincing manner. “Memory” research can be time-consuming because it often 

requires from lengthy retention intervals. Memory effects may also be subtle, benefiting from the 

collection of many trials because hits/miss responses are effectively drawn from a probability 

distribution. Related to the interest in subtlety, highly ranked universities also show a preference 

for “priming” research and “implicit” mechanisms. By contrast, many of the words associated 

with low-ranked universities and few fragile p-values stem from survey and correlational 

research (Supplemental Table S2). Such surveys come with their own limitations, but they can 

presumably be collected more widely and cheaply than the type of experimental work preferred 

by top institutions. 

Altogether, these patterns suggest that the link between university rankings and weaker 

results can be explained as the pursuit of topics and methods where statistical power is likely 

more limited. However, this conclusion alone may not be complete. For the final analysis, a non-

multilevel linear regression was performed regressing a paper’s fragile p-value percentage its 

university ranking while including all 2500 words’ usage levels as covariates. The original link 

between fragile p-values and rankings remains significant (β = .014, p < .0001). Compared to 

another non-multilevel regression without the covariates, the link to rankings has dropped by 

two-thirds (reference: β = .039, p < .0001). Yet, the continued existence of the pattern suggests 

the association is only partly explained by the research topic and method employed. 
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4. Discussion 

The present research investigated reported p-values in psychology papers from 2004 to 

2024, putting forth three main conclusions: First, psychological research has begun to publish 

considerably stronger p-values in recent years, pointing to the success of many replication crisis 

efforts. Second, analyses linking p-values to academic incentives show that contemporary papers 

reporting strong p-values tend to find publication in more esteemed journals and receive more 

citations. However, there are also signs that robust research is still not linked to success, as top-

ranked universities today tend to publish papers with weaker p-values. Third, dissecting these 

patterns by analyzing language usage shows how some methods and topics consistently produce 

findings with fragile p-values. The link between high-end universities publishing weak p-values 

can be partially explained by top universities emphasizing studies that are resource-intensive, 

laborious, and linked to subtle effects. Along with these main results, readers are encouraged to 

see the extensive supplemental analyses, many putting forth original findings (e.g., on p-value 

reporting styles [section 5], insignificant p-values [section 6], and Bayesian or machine learning 

analysis [section 11]). Possible interpretations and implications of the primary findings are 

discussed below.  

The percentage of significant p-values that are fragile (.01 < p < .05) has dropped from 

32% before the replication crisis to just over 26% today (Figure 2). This percentage nearly 

matches the level of fragile p-values expected from studies with 80% power. Further, as 

Supplemental Materials 7.3 and 13.2 show, lower rates of fragile p-values significantly predict 

replicability. These decreases in the fragile p-value rates are evident across every psychological 

discipline. Although there remain very many papers that continue to report weak evidence (see 

Figure 3 ridgeplots), there overall appears to have been considerable progress in the strength of 

psychology’s findings since the replication crisis began. 
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Drops in fragile p-values may be partially explained by many studies increasing their 

statistical power. Power is closely linked to sample size, and sample sizes began to rapidly rise 

around 2015 (Figure 4A), which coincides with fragile p-values precipitously. The expansion of 

sample sizes is likely intertwined with the rise of online recruitment platforms, such as Amazon 

Mechanical Turk or Prolific, which have made large sample sizes more widely accessible 

(Buhrmester, Talaifar, Gosling, 2018). Effect sizes are another piece of statistical power, but the 

association here is more ambiguous. All else kept equal, smaller effect sizes will lead to lower 

statistical power. However, in practice, published studies with low power will report inflated 

effect sizes (Kühberger et al., 2014), so the link between these variables becomes muddled; see 

the strong negative paper-by-paper correlation between sample sizes and effect sizes (Spearman 

ρ = -.68). Thus, decreases in effect sizes over time (Figure 4B) may actually further endorse that 

statistical power is rising in psychological research. In contrast, prior studies have put forth that 

statistical power has remained low in the social/behavioral sciences from 1955 to 2015 

(Smaldino & McElreath, 2016) and the incentives for fast scientific discovery dissuade well-

powered research (Tiokhin et al., 2021). The present patterns are instead more consistent with an 

emerging upward trajectory in statistical power, and statistical power is foundational to 

replicable science (Stanley et al., 2018). 

These demonstrated improvements in psychological research will hopefully push back 

against the public distrust in science that has grown in recent years. Surveys show that 18% of 

laypeople report having heard of recent failures to replicate psychology studies and up to 29% 

report awareness of such failures in other fields (Anvari & Lakens, 2018). A considerable 

minority of the public uses replication failures to justify distrust in scientific research (Anvari & 

Lakens, 2018), and experimental research concurs that informing people of replication failures 
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dampens scientific trust (Hendriks et al., 2020). Hopefully, the results here can serve as a 

springboard to communicate the rigor in much of contemporary psychology.  

The present analyses also demonstrate that papers reporting stronger p-values tend to be 

published in more esteemed journals. The nominal effects between fragile p-values and journal 

SNIP may appear to be minor, as an upper echelon journal (2.5 SNIP, 95th percentile) shows just 

2% lower rates of fragile p-values than less esteemed journals (1.0 SNIP, 20th percentile) (Figure 

5B). However, visual inspection of the scatterplot suggests that there is considerably more 

variability among lower journals. Whereas most high SNIP journals predominantly publish 

strong results, at the lower end, there are journals with results of all sorts. Hence, although a line 

of best fit may not show a steep slope, top journals consistently appear to hold papers to a high 

standard. On top of this journal effect, papers reporting fewer fragile p-values also tend to 

receive more citations. Papers reporting strong p-values (less than 10% fragile) can expect to 

receive 22% more citations than papers reporting mostly weak p-values (over 60% fragile) 

(Figure 5A). Although not illustrated, comparing papers with 10% vs. 90% fragile p-values 

further reveals a 30% gain. These are substantial boosts that exist for conducting seemingly more 

robust research. 

The present findings on journal destinations and citations push back on some pessimistic 

conclusions put forth by earlier work. Examining replication outcomes and reported statistics, 

Dougherty and Horne (2022) along with Gupta and Bosco (2023) suggest that higher impact 

factor journals tend to publish less robust findings. Investigating links to replication outcomes, 

Schafmeister (2021) and Serra-Garcia and Gneezy (2021) argue that successful replication and 

replicability do not impart any benefits to a paper’s citations. However, unlike the present 

research, these four prior studies all focused on older papers (overwhelmingly pre-2017). 

Additionally, these prior studies examined smaller portions of the literature, whereas the preset 
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research better covers the entirety of psychological science and is thus most resilient to selection 

biases. With these changes, a brighter picture unfolds wherein robust results are nowadays 

published in higher SNIP journals and receive more citations. 

All this being said, the final result linking fragile p-values and university ranking adds 

nuance to the otherwise positive trends. Specifically, the #1 globally ranked university will tend 

to publish papers with 3.5% more fragile p-values than the #1000 university (Figure 5C). This is 

a considerable fraction of the temporal trend from before the replication crisis to today. 

Furthermore, examining the confidence intervals of the null Ranking x Year interaction suggests 

that this gap between high/low ranking universities has minimally shifted since the replication 

crisis began, if at all (for a discussion of interpreting the absence of effects, see Lakens et al., 

2018). The language analyses suggest that these patterns can be partly explained by high-ranking 

universities’ preferences for difficult research. This preference manifests as a focus on clinical 

and biological psychology along with tendencies to conduct behavioral studies involving costly 

equipment, multiple days of labor, and in-person data collection. These factors presumably limit 

sample sizes, and the large investments required may encourage questionable research practices.  

The apparent link between university rankings and weaker findings begs questions about 

what exactly the psychology community should aspire for. Some of this difficult research may 

have great practical importance (e.g., medical value). Moreover, this type of ‘prestigious’ 

experimental work may also have higher validity and causal power than despite correlational 

work producing stronger p-values (Table S2). If the type of research pursued by high-ranking 

institutions must be done but must also be conducted in a robust fashion, then what systematic 

changes are necessary? The present research will hopefully inform these types of policy and 

institutional questions.  
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Limitations 

 The principal assumption is that the present approach does not introduce selection bias in 

a way that meaningfully confounds the link between fragile p-values and other variables. 

Selection bias could operate in terms of which papers were included and which results within a 

paper are extracted. Regarding paper inclusion, p-values were extracted for 72% of papers 

containing a Results section. This is a clear majority but leaves a meaningful minority, including 

qualitative papers, methodological papers, and papers using Bayesian statistics or machine 

learning. The results in Supplemental Materials 11.4 and 11.5 investigate such papers, showing 

no evidence of biases against the main conclusions. Nonetheless, these papers create some 

ambiguity. Selection bias may also occur within papers because the analyses ignore figures and 

tables. It is unclear whether this causes p-value fragility to be underestimated or overestimated. 

However, for most research areas, papers’ most central findings will presumably still be 

mentioned in the text. This would suggest that ignoring figures and tables may actually yield a 

more refined measure, although this cannot be said with certainty. 

A final source of selection bias may stem from some journals not being included in the 

dataset. In particular, the dataset omitted journals of miscellaneous research (e.g., Science or the 

Proceedings of the National Academy of Sciences) to ensure that all of the papers covered here 

were specifically on psychological research. As these journals have among the highest impact 

factors, their omission may have caused some selection bias. However, this is expected to be 

minor, as these journals’ papers are a fairly small fraction of the psychology literature. 

Author Contributions: P.C.B. is the sole author of this article. 
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1. Additional data collection details 

Data collection began with the retrieval of metadata from Lens.org. The Lens.org database 

was filtered to solely records from psychology journals; that is, journals classified by Scopus as: 

General Psychology, Social Psychology, Experimental and Cognitive Psychology, Applied 

Psychology, Developmental and Educational Psychology, or Psychology (Miscellaneous). 

Additionally, the database was filtered to only records from large non-predatory publishers 

amenable to data mining research: Elsevier, SAGE Publications, Springer-Nature, Wiley, and 

Frontiers. This yielded 1,156,855 scholarly records from 1900 to August 2024. Notably, these 

are not all articles but instead records (i.e., any item with a DOI) and include entries such as 

editorials, cover artwork, and seemingly erroneous empty items. Publishers American 

Psychological Association and Taylor and Francis could not be used due to restrictions in their 

terms and conditions. These two publishers produced 549,212 records from 1900 to August 2024 

that were not analyzed. Nonetheless, these counts suggest that the five analyzed publishers make 

up a large majority of the psychological literature.  

Of the 1.15M records, some were of journals also considered to be Cognitive Neuroscience 

based on their Scopus categories. Yet, some of the journals labeled Cognitive Neuroscience only 

publish a relatively small number of actual cognitive neuroscience papers. For example, both 

Cortex and Cognition have cognitive neuroscience labels, but the former largely publishes actual 

cognitive neuroscience papers whereas the latter mostly publishes cognitive psychology papers 

(per the Author’s assessment). Hence, every journal with the Cognitive Neuroscience category 

was manually inspected, and the following 30 journals were selected for inclusion despite their 

label (possible near-duplicates related to inconsistent naming in the Lens.org database): Adaptive 

Behavior, Asian Journal Of Sport And Exercise Psychology, British Journal Of Developmental 

Psychology, Child Development Research, Chronic Stress, Cognition, Cognitive Processing, 

Cognitive Psychology, Cognitive Science, Cognitive Systems Research, Developmental Science, 

Evolutionary Psychology, Human Factors, Human Factors The Journal Of The Human Factors 

And Ergonomics Society, International Journal Of Behavioral Development, Journal Of 

Behavioral And Cognitive Therapy, Journal Of Communication Disorders, Journal Of 

Contextual Behavioral Science, Journal Of Fluency Disorders, Journal Of Memory And 

Language, Journal Of Research On Adolescence, Journal Of The Experimental Analysis Of 

Behavior, Learning Amp Behavior, Learning And Motivation, Memory Amp Cognition, Nature 

Human Behaviour, Quarterly Journal Of Experimental Psychology, Sleep Medicine Clinics, The 

Quarterly Journal Of Experimental Psychology, Topics In Cognitive Science. After excluding 

every Cognitive Neuroscience journal except for those 30, the pool of records was reduced to 

1,074,465. Of these, 643,571 were from 2004-2024. 

Attempts were made to download web versions (HTML or XML files) of these 644k 

records. PDFs were not considered, as the HTML/XML versions permit more precise text 

mining, allowing the removal of tables/figures/captions from the text and the segmentation of 

articles into individual sections. The data collection scripts successfully downloaded content for 

598,364 records. Of those, 374,198 contained a Results section, which was cut down to 372,633 

that were from empirical journals (i.e., journals that regularly published papers containing 

Results sections; see Supplemental Materials 2). 

Note that psychology papers from multidisciplinary journals (e.g., Science or the 

Proceedings of the National Academy of Sciences) were not included in the initial pool of 
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records or the final dataset. This is because a paper’s categorization, given by Scopus, depends 

entirely on its journal, and every paper from journals like these is labeled “multidisciplinary.” 

2. Results section extraction 

The papers were pruned to just their Results sections to avoid mentions of p-values in the 

Methods or other sections, which are assumed to be less relevant to the strength of a paper’s 

findings. Pruning involved identifying section titles based on HTML/XML elements. For 

example, Elsevier encodes “Results” section titles using <ce:section-title, id=“…”> 

Results</ce:section-title>. Processing specifically searched for titles containing the words 

“Result” or “Finding” (e.g., “Results” or “Results and Discussion”). In the case of multi-study 

reports containing multiple Results sections, each one’s text was concatenated. HTML/XML 

elements were likewise used to remove figures and table captions. The manual validation 

confirmed the efficacy of these scripts in preventing Methods or caption p-values from entering 

the final datasets. 

Review papers occasionally contained sections with the term “Results”. Although such 

papers are harmless to the analysis, as review papers are unlikely to contain p-values, an effort 

was made to eliminate them. Hence, for a given year, all papers from journals that published 

fewer than five papers with a Results section were deemed to not be empirical journals, and their 

papers were considered to not have Results sections (changes the status of 1730 papers; the final 

count in Section 2.2 accounted for this). 

3. P-value regular expression 

After omitting captions and removing formatting, p-values were extracted with the 

following regular expression: 

[whitespace/parentheses/bracket][p][whitespace/null][sign] 

[whitespace/null][leading zero][whitespace/null][number] 

[whitespace/parentheses/bracket] specifies a whitespace, opening parentheses, or opening 

bracket. The whitespace aspect covered the different Unicode characters used to represent spaces 

(e.g., a standard space “ ”, a non-breaking space U+00A0, etc.). [p] specifies “p” or “P”. 

[whitespace/null] specifies whitespace or the lack of any character. [sign] corresponds to “=”, 

“>”, “≥”, “<”, or “≤”. [leading-zero] corresponds to “0” or the lack of any character (e.g., “p = 

.04” and “p = 0.04”). Finally, [number] corresponds to decimal numbers and scientific notation 

(e.g., “p = 2.7 × 10-5”; given the diversity in how scientific notation is written, some cases were 

presumably not covered). This elaborate expression was developed to satisfy many different 

journals’ reporting styles. 

4. Test statistic extraction and processing 

In addition to p-values, measures describing other outputs of statistical tests were also 

extracted and assigned to a nearby p-value. Foremost, extraction attempted to extract complete 

test statistics (t-values, F-values, chi-square scores, r-values, and z-scores) with complete degrees 

of freedom. To do this, the text up to 32 characters prior to a given extracted p-value was 

scanned using a regular expression designed for the extraction of test statistics (see released 

code). If, for example, a different p-value was reported 20 characters prior, then a search would 

only cover the prior 19 characters to avoid ambiguity. Overall, 947,117 extracted p-values 

(37.4%) were paired with a test statistic with complete degrees of freedom.  
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In some cases, F-values and chi-square values were reported inversely. That is, an F-value 

is typically used to indicate that one variance is significantly greater than another variance (e.g., 

F[1, 100] = 4 indicates p = .05). However, F-values can also be used to report that one variance 

is significantly smaller than another (F[1, 100] = 0.25 may also indicate p = .05). These cases 

were identified by assessing whether one minus the p-value implied by a test statistic is within 

0.1 of the nearby reported p-value. For example, if a paper reports “F[1, 100] = 0.25, p = .05”, 

then the F-value is treated as 4. As so, 0.1% of F-values were flipped. The same was done for 

chi-square statistics, but these were more common (1.7% of chi-square values flipped). 

5. Underreporting and overreporting p-value robustness 

5.1. Reporting styles 

Papers differ in how they report p-values. The APA style manual 6th and 7th editions state 

that p-values should be reported exactly (e.g., “p = .04”) unless they are less than .001  

(e.g., “p < .001”). However, many papers deviate from this. Papers may use a weaker lower-

bound cutoff, such as using “p < .01” or possibly have a p < .001 resolution but use less-than 

signs throughout (e.g., reporting always reporting “p < .05”, “p < .01”, or “p < .001”). One 

reporting style can be problematic – namely, papers that write “p < .05” for every significant p-

value even if the p-value is far below the significance threshold (e.g., t[50] = 3.0 corresponds to 

p = .004 but may be reported as “p < .05”). These papers may present strong results with fragile 

p-values, which is an issue for the present focus on examining percentages of significant p-

values that are fragile. To investigate this issue, a taxonomy of p-value reporting styles was 

created, and the frequencies of different styles are listed in Table S1. 

Style Quantity Percentage fragile Number with p-implied 

Equal/less Cutoff Count (%) Raw p-values P-implied Count (%) 

All less 0.05 5549 2.3% 100.0% 50.9% 1614 29.1% 

 0.01 4062 1.7% 0.0% 3.5% 1110 27.3% 

 0.001 14591 6.1% 0.0% 0.8% 5819 39.9% 

 0.0001 1130 0.5% 0.0% 1.0% 351 31.1% 

All less mixed 0.05 260 0.1% 100.0% 82.8% 113 43.5% 

 0.01 12942 5.4% 44.5% 38.2% 5340 41.3% 

 0.001 44515 18.5% 26.6% 22.1% 22718 51.0% 

 0.0001 6833 2.8% 22.6% 19.7% 3970 58.1% 

Equal less 0.05 44 0.0% 100.0% 87.7% 23 52.3% 

 0.01 3374 1.4% 44.3% 39.7% 1639 48.6% 

 0.001 64420 26.8% 29.0% 25.3% 41507 64.4% 

 0.0001 4484 1.9% 29.2% 27.1% 2071 46.2% 

All equal 0.05 3447 1.4% 100.0% 96.4% 1236 35.8% 

 0.01 9197 3.8% 63.8% 59.8% 3917 42.6% 

 0.001 5613 2.3% 43.8% 42.9% 2601 46.3% 

 0.0001 5658 2.4% 29.5% 28.0% 2510 44.4% 

Eclectic  54247 22.6% 35.6% 28.8% 34595 63.8% 
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Table S1. Summary of p-value reporting styles. Five categories of significant p-value reporting styles 

were defined: All less represents papers that report every p-value as “p < x” where x is identical for every 

reported result. The Cutoff column represents the value of “x”. Papers in between the listed levels (e.g., 

“p < .005” or “p < .02”) were uncommon, and are listed here by rounding up to .0001, .001, .01, or .05. 

All less mixed papers always report “p < x” but the “x” may vary across results. The cutoff represents the 

lowest possible x; note that All less mixed .05 represents cases with, e.g., “p < .02” and “p < .05”, where x 

= .02 was rounded up here in the table categorization per above. Equal less represents papers that report 

“p = y” for varying y unless “p < x”, and the cutoff represents this x; APA style is generally described as 

this with a cutoff of .001. All equal papers always report “p = y” for varying y. Eclectic papers do not fall 

into any other category (e.g., reporting “p = .008” and “p < .01”). The Percentage Fragile columns 

represent the mean percentage of fragile p-values across the papers in a row, calculated with respect to the 

reported p-values themselves or in terms of p-values implied from neighboring test statistics. The 

rightmost columns indicate the number of papers in a row reported with any test statistics at all. The 

counts reflect the dataset pre-no-SNIP and pre-no-affiliation exclusion (total 240,355 papers). Overall, 

67003 papers (45.1%) adhere to APA style (“p = …” unless “p < .001”) or a stricter form of APA style 

where the lower bound is below .001; APA style corresponds to All less .001 or .0001, Equal less .001 or 

.0001, All equal .05, .01, .001, .0001. Categorization omitted p-values reported “p = .05” as some papers 

treat “p = .05” as significant whereas some treat it as insignificant (overall, just 0.7% of p-values in the 

dataset are “p = .05”). 

Fortunately, papers that exclusively report “p < .05” make up only 2.3% of papers in the 

dataset. These could be excluded entirely from the analysis. However, calculating the fragile 

percentage using p-values implied from test statistics reveals that papers that always report  

“p < .05” mostly put forth weak results (implied p-value fragile percentage = 51% in Table S1). 

Hence, simply excluding those 2.3% of papers would downplay fragile p-value levels. Instead, 

the present analyses defined papers that report every p-value as “p < .05” Hence, for these 

papers, their fragile p-value percentage was recomputed based on the p-values implied by nearby 

test statistics. For “p < .05” papers that did not report any statistics, their fragile p-value 

percentages were all set to 51%. 

Aside from papers that report “p < .05” for every result, papers in general regularly report 

“p < .05” even when their reported test statistic suggests that the true p-value is p < .01. 

Specifically, going beyond “always p < .05” papers, examining all p-values with valid test 

statistics reveals that 9.2% of p-values recorded as fragile (.01 ≤ p < .05) are actually robust per 

the implied p-value (pimplied < .01). These authors understated their findings’ robustness. This 

type of underreporting is more common than erroneous overreporting: Among significant p-

values reported as robust (“p < .01”), 1.3% of p-values reported are actually fragile per the 

implied p-value.2 Using the overreporting and underreporting measures, a correction can be 

applied. Specifically, if the p-fragile-percentage rate is recorded as 35% (see main-text Figure 

2A), when underreporting and overreporting are accounted for, this suggests that the true fragile 

p-value percentage is actually 32.7% (a 2.3% difference); note .023 = .35 × .092 + .65 × .013.3 

The plot of fragile p-value percentages over time in the main text Figure 2A has 2.3% 

subtracted from each point. Yet, even with this correction, plotting the implied fragile p-values 

themselves shows lower levels, particularly in 2024 where there appears to be a gap as large as 

 
2 Note that these discrepancies are largely not due to rounding issues related to “p = .01”. If such p-values are 

ignored, there remains a 6.6% (from 9.2%) rate of underreporting robustness.  
3 It is only by coincidence that the number 2.3% appears twice here as both the percentage of “p < .05” papers and 

the amount of correction necessary. Those calculations are independent. 
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4%. This difference may be explainable as a selection effect, in terms of which papers properly 

report test statistics and which results are reported alongside test statistics (e.g., usually no test 

statistics are reported with regressions).  

Overall, the effects of papers misreporting robust results as “p < .05” appear to be fairly 

small, demonstrating the validity of the present focus on p-values. Nonetheless, given the minor 

ambiguity, the main text multilevel regression was also done while using the fragile implied p-

value percentage. (Supplemental Materials 13). 

5.2. One-tailed testing and misreported p-values 

 Along with papers varying in their overall reporting style, any papers may simply 

misreport individual p-values. The present subsection investigates this topic to clarify whether 

misreports could induce biases or shift interpretations. This issue can be examined by analyzing 

the relationship between reported p-values and the p-values implied by nearby test statistics. In 

general, severe misreporting is rare (see the ρ = .972 correlation of p-values x implied p-values in 

Supplemental Materials Section 7.2). Nonetheless, the focus here is on those uncommon 

instances of misreport. 

The present analyses use a technique akin to the statcheck method, evaluating test-statistic/ 

p-value consistency while accounting for possible rounding errors. For example, t[19] = 2.3 

would be consistent with p-values anywhere in the range of t[19] = 2.25 (p = .036) to  

t[19] = 2.35 (p = .030). Consistency in this way was tested for every p-value in the dataset that 

was reported alongside a test statistic. Only significant p-values with an equal sign were 

considered. 

Of the results, 12.7% showed inconsistency between their reported p-value and implied p-

value. For inconsistent results, Figure S1A displays the differences in the z-scores corresponding 

to the reported p-value and the implied p-value; negative values indicate that the reported p-value 

was underreported (e.g., “p = .02” while pimplied = .01) whereas positive values indicate that the p-

value was overreported. One emerging pattern is the spike around 0.3. This spike reflects one-

tailed testing (e.g., p = .025 corresponds to z = 1.96 while p = .05 corresponds to z = 1.64); 

calculation of implied p-values by contrast always assumed two-tailed testing. To identify cases 

of one-tailed testing, every inconsistent result was assessed for whether its implied p-value was 

2x the reported procedure (i.e., re-doing the statcheck strategy but for one-tailed implied p-

values). The inconsistent results identified used this strategy are shown in red in Figure S1B. 

One-tailed testing can also be found by examining language usage. Nuijten et al. (2016; BRM) 

attempted to delineate one-tailed tests by searching entire papers for “one-tailed”, “one-sided”, or 

“directional”. Here, a similar strategy was used (searching more broadly for the terms “-tailed”, “ 

tailed”, “-sided”, “ sided”, or “directional”). This identified the results shown in blue in Figure 

S1C. Examining trends over time shows that rates of one-tailed testing have gradually decreased 

(Figure S1D). Note that one-tailed testing does not necessarily explain the gap between fragile p-

value percentages and fragile implied p-value percentages reported in main text Figure 2. Many 

of those one-tailed results would not even be considered per their implied p-values. 
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Figure S1. Frequencies of misreporting p-values and one-tailed statistical tests. A. The black area 

represents a histogram, wherein each entry is one case where a result’s reported p-value deviates from the 

p-value implied by a nearby test statistic. This histogram notably shows a clear secondary peak around z 

= 0.35. B. The secondary peak is driven by the p-values from one-tailed significance tests. Here, the red 

indicates entries where the “misreported” p-value entry aligns perfectly with twice the statistic-implied p-

value, which would be produced by a one-tailed test. C. Another way to identify one-tailed tests is by 

searching papers for the terms “-tailed”, “ tailed”, “-sided”, “ sided”, or “directional”. Inconsistent results 

that are in papers containing one of these keywords are shown here in blue. 

 Moving beyond just one-tailed tests, Figure S2 quantifies more general temporal trends 

in misreporting (with the colored lines representing the trends while one-tailed inconsistencies 

are omitted). Interestingly, the rate and magnitude of misreporting seem to have gone down until 

2015 and then increased in recent years (Figures 2A & 2B). Yet, authors do not appear to be 

misreporting statistics nowadays in a way that specifically favors them, as the rate of 

overreporting and underreporting occurs at roughly 50%/50% rates (Figure 2C). The reasons for 

this are unclear. One possibility is that this is that papers are now reporting statistics with more 

precision, creating more room for error; test statistics were reported with an average of ~1.9 

decimal points around 2004 and this increased to ~2.05 decimal points today; p-values were 

reported with ~2.65 decimal points in 2004 to ~2.8 decimal points today. Potentially, there are 

selection effects emerging related to the types of papers that do or do not report test statistics. 

Fully unpacking this question is beyond the present scope. Most relevant for the present work, 

there do not appear to be stark differences across sub-fields in misreporting or one-tailed testing 

(Figures 2D & 2E), albeit with social psychology possibly showing ~2% lower misreporting in 

most years. The reason for this trend is unclear. Overall, examining misreports did not yield any 

evidence that would challenge the validity of the main text analyses or interpretations. 



     Supplemental Materials        7 

 
Figure S2. Temporal trends in misreporting p-values and one-tailed statistical tests. A. The lines 

represent the p-value/implied-p-value inconsistency rate each year. The red and blue lines correspond to 

the rates when one-tailed results are omitted (detected via one of the two ways noted in the text and the 

Figure S1 caption). One-tailed results would otherwise be considered misreported. B. This line represents 

the absolute difference in z-scores between p-values and implied p-values, averaged across all 

misreported cases. C. The percentage represents the rate at which a misreport produces a p-value that is 

stronger than the implied p-value. D. This corresponds to the black line from plot A but is now computed 

separately for each sub-field; shaded regions were computed by averaging the misreporting rate by paper 

and then taking the standard error (shaded regions represent ±1 standard error). E. This corresponds to the 

one-tailed rate shown in Figure S1D but computed separately for each field. 

6. Insignificant results 

The main text analyses focus on statistically significant results, but it is also interesting to 

consider insignificant results and how the percentage of insignificant findings may have shifted 

over time. Potentially, rises in registered reports and preregistrations have encouraged more 

insignificant findings to be reported. This topic is investigated here. 

Among the main dataset – i.e., papers reporting at least two significant p-values – the 

average paper now reported a higher percentage of its results as insignificant, compared to two 

decades ago (Figure S3). This may reflect papers now providing more elaborate statistical 

descriptions of their data, including insignificant associations. However, there was an interesting 

downward trend from 2019 to 2022 with a major downtick between 2021 and 2022. The reasons 

for this are unclear, although potentially the large downtick is related to the COVID-19 

pandemic in some way. 

A.

B.

C.

D.

E.
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Figure S3. Rates of insignificant p-values. This line reflects the percentage of reported p-values that are 

insignificant (p > .05) within the main dataset representing papers otherwise reporting significant 

findings. The shaded region represents ±1 standard error. 

Further descriptive statistics were calculated, now examining the percentage of papers 

that entirely report insignificant results. These analyses begin with a version of the dataset that 

contains all papers with at least one p-value (269k papers). Of these, 8,101 papers (3.0%) only 

reported insignificant results, although roughly half of those corresponded to papers reporting 

just a single finding. On average papers with entirely insignificant results report a mean of 2.54 

p-values (SD = 2.75). Among papers reporting at least two p-values, 4,212 (1.6%) reported only 

insignificant results. Of note, the former pool of 8,101 papers may include non-empirical reports 

that mention “p > .05” as part of their prose without reporting specific results. To avoid these, the 

analyses proceed by filtering the dataset to only papers with at least two p-values (253k papers), 

which also parallels the design of the main text dataset. 

There seems to be an increasing trend in the percentage of papers reporting entirely 

insignificant results. Figure S4A first illustrates this, examining the percentage of the 253k 

papers that exclusively report insignificant results. From 2007-2024 there is a gradual slow 

upward trajectory in the percentage of papers reporting entirely insignificant results. To be clear, 

the earliest dates (2004-2006) run counter to this idea. The high points in those early years may 

be noise related to the lower numbers of papers, although it is also possible that this is a selection 

effect, as in those years, papers were only available from journals that shifted to web versions of 

articles at that time. Regardless, when more complete sets of journals are investigated, the 

trajectory is upwards. 
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Figure S4. Percentage of papers reporting entirely insignificant results. A. This line shows the 

percentage of papers for which all of the reported p-values are insignificant (p > .05) (among all papers 

reporting at least two p-values in general). B. This second line is similar to A but now only tracks papers 

that report at least two exact (“=”) p-values. 

To further investigate papers reporting entirely insignificant findings, and to further ward 

off papers writing “p > .05” as prose without focusing on specific findings, an additional plot 

was made: Figure S4B shows the percentage of papers reporting entirely insignificant findings 

that reported at least two exact (“=”) insignificant p-values (e.g., reported “p = .24”). This plot 

shows a clearer and larger upward trend from 2007-2024. 

7. Validation 

7.1. Manual validation 

Manual inspection assessed whether the number of p-values extracted using the regular 

expression matches the actual number of p-values reported in a paper while properly ignoring 

non-Results sections, tables, and captions. Forty papers spanning every Publisher were inspected 

(DOIs listed in the linked OSF repository). Every paper’s number of p-values aligned perfectly 

with the extracted p-values. 

7.2 Cross-checking p-values and test statistics 

Second, a wider validation was performed on the accuracy of the exact p-values extracted. 

As described above, for each p-value, an attempt was made to extract its associated test statistic. 

This was successful for 1,398,077 p-values (35.8%) and of those 671,119 are exact (“=”)  

p-values (e.g., ignoring “p < .001”). Based on each test statistic, an implied p-value can be 

computed. Measuring the Spearman correlation between the extracted p-values and the implied 
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p-values yields a tight correlation (ρ = .972). Measuring the Pearson correlation between the z-

scores implied by the p-values and those implied by the test statistics also shows a tight 

correlation (r = .974). Note that the small bit of unexplained variance also does not necessarily 

imply even a small error in the present parsing, as misreporting and rounding will lower the 

correlation from 1.0. Overall, this demonstrates the accuracy of the present regular expressions. 

7.3. Predicting replicability 

The third form of validation assessed the premise that p-values shed major light on 

replicability. For this, two additional datasets detailing successful and unsuccessful replications 

were acquired: (1) the data by Youyou, Yang, Uzzi (2023) (PNAS) (https://osf.io/f5sxn/) and (2) 

the replication database by the Framework for Open and Reproducible Research Training 

Replication Database (https://osf.io/9r62x/); these two datasets were included in the present 

research’s repository. Together, the downloaded data describe 498 replication attempts that 

yielded successful replications or decisive unsuccessful replications. Of these, 113 papers 

overlapped with the present dataset (49 successful replications and 64 conclusive failures); the 

considerable drop is partly because many of the replication attempts focused on older papers not 

gathered here. Nonetheless, as will be shown, the differences in the p-values between replicable 

and non-replicable papers were large, and 113 papers proved sufficient for a decisive 

demonstration.  

Using the replication data, two analyses were done. First, a two-sample t-test was used to 

compare the proportion of fragile p-values among the original studies that replicated to the 

proportion from studies that did not replicate. Second, a basic machine learning analysis was also 

performed, attempting to predict replication outcomes based on a paper’s p-values. For this, a 

logistic regression classifier was tested attempting to predict replicability from the proportion of 

a paper’s p-values that were fragile. For classification, chance-level accuracy was set to be 50% 

by randomly selecting the dataset to 49 successful and 49 unsuccessful cases. Then, leave-two-

out cross-validation was performed, while always leaving out one successful and one 

unsuccessful case to maintain the stratification during training. Cross-validation accuracy was 

averaged across 1,000 runs using random 49/49 subsets and leaving out random pairs. 

As expected, studies that were later replicated showed distinctly fewer fragile p-values  

(M = .32 [SE = .03]) than studies that did not replicate (M = .51 [SE = .03]) (t[112] = -3.89,  

p = .0002, d = -0.74; Figure S5). Additionally, a logistic regression classifier was tested, which 

attempted to predict replication outcomes based on a paper’s fragile p-value percentage. It 

achieved 63.7% cross-validated accuracy, relative to chance-level accuracy set to 50% via 

stratifying the data. Similar results emerged when the classifier instead used the fragile 

percentage calculated using p-values implied from test statistics, which yielded a classifier with 

63.4% accuracy (Supplemental Materials 13.1). These accuracy gains relative to chance are 

notably higher than what a prior study achieved while attempting to predict replicability using an 

article Abstract’s language usage (Yang et al., 2020) (PNAS), which speaks to the power of this 

p-value approach.  

https://osf.io/f5sxn/
https://osf.io/9r62x/
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Figure S5. Replicable papers generally have fewer fragile p-values. Each dot represents the fragile p-

value percentage for one paper and whether the paper’s results were replicated or not. The dashed line at 

32% represents the cutoff for whether a paper has over or under a 50% chance to replicate given its 

fragile p-value percentage, as identified using a logistic regression. The red “33.8%” indicates that 33.8% 

of papers above the dashed line replicated. The green “59.5%” indicates that 59.5% of papers below the 

dashed line replicated.  

8. Incentives variables 

8.1. Journal reputation 

Journal reputation was defined as SNIP scores, which were gathered using the Scopus API. 

SNIP scores represent a journal’s impact factor (citations over the last three years divided by the 

number of papers over the last three years) normalized with respect to the typical number of 

citations that papers in the journal’s field tend to receive. SNIP varies for each journal by year. In 

years when no SNIP score was available for a given paper (e.g., when new journals were 

founded), the soonest subsequent score was assigned. For instance, if a journal’s 2011 and 2012 

scores were not available, but a 2013 score was, then papers that the journal published in 2011 

and 2012 were assigned the 2013 score. This was done for just 5.0% of cases and hence was 

unlikely to introduce considerable bias. 

8.2. Citations 

Citations counts were provided for each paper by Lens.org as of August 3rd, 2024. Citations 

per year were calculated by dividing the count by 2024 minus publication year. Because citations 

per year are strongly right-skewed (main text Figure 1E), the values were log-transformed, log(x 

+ 1). Then, to further normalize the citations per year data, the data were z-standardized on a 

year-by-year basis. For instance, to normalize papers from 2013, the 2013 log-citation-count 

mean was subtracted from each paper, and the resulting quantity was divided by the standard 

deviation of the 2013 papers’ log-citation-counts. This procedure precisely accounts for the 

(strong) non-linear relationship between citations and publication year.  
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8.3. University ranking 

University affiliations were assigned to papers by searching each paper’s text for the names 

of universities listed in the Times Higher Education 2024 World University Rankings (e.g., 

searching for the string “Duke University”). Only the top 1000 ranked schools, sorted based on 

their 2024 research score, were considered. The search only covered the first half of each paper’s 

text to avoid university names that may appear in its reference section (e.g., “Harvard University 

Press”). Paper text and university names were both stripped to only letters in the Modern English 

alphabet (e.g., diacritics were removed). Overall, for the final dataset, 945 universities from 69 

countries were successfully linked to at least one paper (942 among papers with a SNIP score). 

Preliminary tests, which also covered documents without a Results section, found 978 

universities, meaning that many universities not identified simply reflect their absence from the 

scholarly record and not a parsing limitation. Most papers were linked to multiple universities 

(M = 3.74 universities, SD = 3.99, median = 3). Among the potentially multiple universities, the 

one that appeared most often in the text was selected and assigned as the paper’s school; ties 

were broken randomly. Selecting a single university for each paper was useful for the analyses 

below, which could then use multilevel regressions that permit modeling the one university as a 

grouping factor. Confirmatory analyses using different approaches to defining one score – either 

the maximum, minimum, median, or mean score of a paper’s universities – yielded similar 

multilevel regression findings (Supplemental Materials 9.1).  

Based on a paper’s assigned university, a ranking score variable was assigned to it based on 

the university’s research score (a continuous measure). Times Higher Education states that this 

score was calculated based on surveys of each school’s reputation (60% weight) along with 

measures of research spending per staff (20% weight) and publications per staff (20% weight). 

All papers were assigned their school’s 2024 research score regardless of the paper’s publication 

year. This was done because, rather than a year-specific score, older rankings (e.g., 2011) 

included as few as just 200 schools. Additionally, the correlation of a school’s rank across years 

is extremely strong. Supplemental Materials 9.2 discusses this and shows that the multilevel 

regression below produces similar results regardless of the strategy used. 

9. Alternative definitions for papers’ university ranking score 

9.1. Other ways to select one school 

 The main text defined a paper’s university as the one whose name appeared most often in 

the paper’s text (i.e., the mode). Here, alternative approaches to assigning one university to 

papers were examined and submitted to the regression predicting fragile p-value percentages 

from university rankings (see Supplemental Materials 10). For the most part, multilevel linear 

regression retained a significant effect of higher ranking predicting more fragile p-values: This 

was for taking the maximum-ranked university (β = .021, p < .0001), the median-ranked 

university (β = .017, p = .0001), or the mean of the university ranks (β = .024, p < .0001). Taking 

the minimum-ranked school yielded an effect that fell short of the α = .001 threshold (β = .013, p 

= .002). However, given that this is just one of the four alternative strategies tried, this is not 

taken to raise questions about the main-text conclusions. Note that the mean analysis required 

omitting the university-level and country-level random intercepts, given that the individual 

papers would be associated with multiple schools. 
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9.2. Yearly rankings 

 Times Higher Education has produced university rankings each year since 2011, although 

the number of universities ranked has increased over time. In 2011, they ranked 200 schools. 

From 2012-2015, they ranked 400-402 schools. In 2016, they ranked 800 schools. In 2017, they 

ranked 981 schools. From 2018 and after, they ranked over 1000 schools. Schools’ ranks 

strongly correlate over time. Figure S6 below shows the Pearson correlation between schools’ 

research scores in a given pair of years. Given this strong correlation across years, the main text 

analysis was done with respect to just a university’s 2024 ranking; using a yearly score also 

limits the schools that could be analyzed each year. 

 

Figure S6. Strong temporal correlation in university ranks. The colors reflect the Pearson correlation 

between a given school’s research score in a given pair of years. Schools ranked one year but not in the 

other are omitted from a given cell’s correlation. 

Nonetheless, the main text multilevel analysis of university ranking effects can also be 

performed while assigning papers the Times Higher Education research score of their 

universities at the time of the papers’ publication years. This analysis is done using the same 

dataset used for the main text analyses, restricting the analysis to just the schools ranked in the 

top 1000 in 2024, regardless of their ranking in a paper’s publication year. For papers published 

in a year before their university entered the rankings, these were assigned the most recent 

available year. For example, if a paper was published in 2012, but its university was only ranked 

in 2016, then the 2012 paper would be assigned the 2016 ranking. 

The main text regression is premised on schools having a constant ranking, given that it 

defined a random intercept at the university level. Now, because a university’s ranking can vary 

over time, the regression was adapted to include a random slope for the ranking effect. Hence, 

the effect of ranking will reflect both differences across universities and changes within a 

university over time. The R-style equation is as follows: 

fragile_p_percentage ~ 1 + ranking_yearly × year + 

(1 | journal) + (1 + ranking_yearly | school) + (1 | country) 
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The link between p-values and ranking has weakened, falling below the α = .001 threshold 

described in the main text (β = .010, p = .008). Potentially, this weakening is because using 

research scores from different years for different papers creates a source of noise. Related to this, 

the p-value “p = .008” may seem concerning given the size of the dataset, although it’s important 

to recognize that the degrees of freedom for this effect are just 200 (per Satterthwaite's method). 

In addition, it should be noted that the country-level intercept can limit the identification of 

between-university differences. If the country-level random intercept is omitted, then the effect 

of university ranking returns to strength (β = .017, p < .0001). 

10. Multilevel regression structure 

A series of multilevel regressions were performed linking papers’ fragile p-value 

percentages with their SNIP, citation, and ranking scores. SNIP: 

SNIP ~ 1 + fragile p percentage × year +  

(1 + fragile p percentage | journal) + (1 + fragile p percentage | school) 

The use of random slopes ensures that associations with SNIP generalize across journals and 

schools. It was possible to include random slopes for the journal group because a journal’s SNIP 

may vary over time. Citations: 

citations ~ 1 + fragile p percentage × year + SNIP × year +  

(1 + fragile p percentage | journal) + (1 + fragile p percentage | school) 

Note that this regression assesses whether any effects of fragile p-values on citations go beyond 

any SNIP/journal effect – i.e., testing whether increases or decreases in citations cannot be 

explained by the journal in which a paper is published. A regression that does not control for 

SNIP and the SNIP × year interaction yields significant effects (p < .0001) in the same direction.  

Finally, the university ranking analysis was as follows: 

fragile p percentage ~ 1 + ranking score × year +  

(1 | journal) + (1 | school) + (1 | country) 

Note that the ranking score regression is somewhat different from the SNIP and citations 

regressions. Here, ranking score is the predictor rather than the dependent variable. The 

regression cannot be run with ranking score as the dependent variable because this measure is 

static for each school, meaning that the school random intercepts would entirely predict it. This 

static nature also means that the analysis is somewhat similar to a between-school correlation. 

The country random intercept was added here to ensure that rankings effects cannot be due to 

schools in one country. However, it was not feasible to add a ranking score random slope to 

country because this would cause a drastic reduction in the degrees of freedom when assessing 

statistical significance (just 6.8 degrees of freedom, per Satterthwaite’s method). An alternative 

arrangement of the analysis, where a single large regression is performed, predicting fragile p-

values based on all three other predictors, yields similar results to those reported, albeit with an 

insignificant Citations x Year interaction. 

Because the regression covers interaction effects, the predictors were mean-centered prior 

to analysis; see Iacobucci et al. (2016) for a discussion on why this reduces collinearity and leads 

to coefficients that many see as more interpretable. For the year predictor, the mean was 2016.5 

(not the exact middle of 2004-2024 because more papers were published in later years). 
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11. Considering possible sources of bias 

11.1. Summary 

First, instead of examining the percentage of a paper’s p-values that are fragile, analyses 

were done considering the overall number of fragile p-values in a paper. These tests suggested 

that the percentage is a more valid measure, as the overall number is heavily impacted by the 

total quantity of p-values in a paper (i.e., extensive results inevitably lead to many fragile p-

values). 

Second, tests were performed considering the possibility that results may be confounded by 

researchers’ ages. The tests showed that older researchers tend to be employed at higher-end 

institutions but produced no evidence that age would confound the analysis of fragile p-values.  

Third, the present analyses do not accommodate papers that report significance entirely 

through figures or tables. Among papers containing a Results section, at least one p-value was 

extracted for 72% of them. In principle, the remaining 28% could induce a selection bias. 

Although studying these papers is limited, the existence of bias was assessed. Analyses were 

done that extrapolated this 28% of papers’ fragile p-value percentages by assuming that papers 

from a given journal in a given publication year will tend to be held to similar standards of p-

value strength. Although the extrapolated data cannot be used to assess the effects of SNIP or 

citations, it is informative for the university rankings effect. Ultimately, the dataset with 

extrapolation yielded similar results on university rank. 

Fourth, by focusing on p-values, the present research targets frequentist papers. Yet, the use 

of Bayesian and/or machine learning methods may also vary with respect to the variables 

studied. The results notably showed that top universities were more likely to publish empirical 

papers containing keywords related to Bayesian statistics or machine learning. However, these 

papers were also found to just be a small minority of psychological literature (altogether roughly 

just 5% of empirical papers) and are unlikely to bias the multilevel regression conclusions.  

11.2. Examining the overall number of fragile p-values 

The main text analyses focused on the percentage of a paper’s p-values that are fragile 

rather than the number of a paper’s p-values that are fragile. This choice was made because the 

latter depends primarily on the overall number of p-values in a report. Specifically, the number 

of fragile p-values correlates more strongly with the overall number of p-values (r = .66) than it 

does with the percentage of a paper’s p-values that are fragile (r = .47). That is, most papers that 

simply report extensive results will, by chance, have many fragile p-values. Additionally, 

because the number of p-values in a paper is strongly right-skewed (see main text Figure 1C), 

this produces outliers that may have outsized effects on the analysis. Hence, the main text 

analysis focused on the percentage of p-values that are fragile rather than the overall quantity.  

Nonetheless, reproducing the main text results while instead predicting the overall number 

of fragile p-values would prove to show the robustness of the conclusions. Hence, the main 

multilevel regression was performed again as so, albeit now while excluding 1.8% of papers that 

reported an exceedingly high number of fragile p-values to account for the rightward skew 

(dropping z-standardized counts over 3.0). The same regressions were used as described in 

Supplemental Materials 10, but with fragile p-value percentages being changed to fragile p-value 

counts. 
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The fragile p-values x Year interaction effect on SNIP reported in the main text, wherein 

papers with fewer fragile p-values are published in higher journals, was reproduced here  

(β = -.022, p < .0001). Likewise, the links to university rankings were reproduced, wherein 

highly ranked institutions tend to have more fragile p-values (β = .015, p = .0001). Interestingly, 

the link between fragile p-values and citations shifted to falling just under the α = .001 threshold 

mentioned in the main text (β = -.002, p = .002). However, there remains a significant fragile p-

values x Year interaction effect on citations (β = -.029, p < .0001). Regressing all three incentive 

variables to predict the overall number of significant p-values in a paper (fragile or robust) 

reveals that papers with more citations have more p-values overall (β = .010, p < .0001). This 

latter effect, notably, is stronger than the effect on the fragile p-value count, suggesting that this 

preference for many results is causing it. Hence, this analysis overall does not cast doubt on the 

validity of the main text findings. 

11.3. Ruling out the possibility of age-related confounds 

Analyses considered the possibility that some effects on fragile p-values may be 

confounded by researchers’ ages. Hence, the “academic age” of a paper’s senior author was 

calculated and defined as the year in which the author first published a paper in the senior 

position (Figure S7). Identifying this first year used the full pool of 1.7M records downloaded 

from Lens.org, including the data on papers published by the APA and Taylor & Francis, even 

though these publishers could not be used in the main analyses requiring full-text papers.4  

 

 
4 Note that multiple authors may share the same name, and this would influence the academic age calculation. 

However, basic checks suggest that this is a small effect. Among the 23,283 last-position authors on at least 10 

papers in the dataset, there are 4,886 unique first names/initials and 14,836 unique last names. Beyond first and last 

names, 55% of names contain at least three elements (e.g., contain a middle initial). It is difficult to estimate the 

exact number of overlapping names, given that first and last names are not independent, although the number of 

possible combinations is extremely large (72.5 million first-last name combinations). 
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Figure S7. Histogram of identified author ages. There are some interesting patterns. There is an uptick 

in 2004. Per manual inspections, this may be because 2004 was when many journals began publishing 

web versions of articles, which may have slightly influenced the Lens.org database construction. There is 

a local maximum near 2010. Per manual inspections, this may be because 2010 is when publishing web 

versions became standard across every publisher, which likewise may have impacted the Lens.org 

database constructions. Finally, there is a spike in 2021. This may be related to the COVID-19 pandemic 

slowing publication rates in 2020. These patterns point to limitations in this way of modeling age, 

although overall, the patterns are unsurprising (i.e., a clear upward trend over time, consistent with the 

increase in the number of papers published over time). 

Regressing age on year, SNIP, citations, and ranking scores using the random intercepts 

above revealed that older researchers do not publish in higher/lower journals (β = .005, p = .51) 

nor receive more/fewer citations (β = -.004, p = .051). However, older researchers are employed 

significantly more top-ranked universities (β = .05, p < .001); the negative Ranking Score x Year 

interaction also shows that prestigious university’s preferences for older researchers have 

decreased slightly over time (β = -.007, p = .001). Yet, regressing fragile p-values on age and 

year did not yield any significant effect of age (β = .002, p = .53), meaning that any effect of age 

is null or small. Hence, age is not a problematic confound. 

11.4. Papers with Results sections but no p-values 

Analyses were done investigating the nature of papers for which a Results section was 

extracted but not even a single p-value was identified. This analysis uses 221,471 articles 

containing a Results section along with an identified affiliation and SNIP score (i.e., of the 

372,633 empirical papers, dropping ones without a SNIP score or identified school). Among 

these articles, 166,191 contained at least one p-value (significant or insignificant). This suggests, 

for the most part, that the present p-value-focused approach taps into the robustness of most 

empirical psychology papers. Nonetheless, the p-valueless papers and how they may differ from 

papers with p-values deserve consideration. A multilevel regression was tested which mirrors the 

one used for the main text analysis but is now a logistic regression predicting whether a paper 

contains at least one p-value or not. Its R-style equation is as follows: 

has_p ~ 1 + SNIP × year + citations × year + ranking score × year + 

 (1 + SNIP | journal) + (1 | school) + (1 | country) 

Top journals have become more likely to publish papers containing at least one p-value in 

recent years (SNIP x Year interaction: β = .03, p < .0001; SNIP main effect: β = .04, p = .05). 

Papers with at least one p-value also tend to receive fewer citations (β = -.05, p < .0001), 

although the effect over time is unclear (Citations x Year: β = -.015, p = .01, note the weak p-

value, which is below the α = .001 threshold in the main text). Whether papers had at least one p-

value was unrelated to the ranking of its authors’ universities and that effect did not interact with 

time (ps > .33). 

Although the link to university ranking was insignificant, further tests were done to 

consider the possibility that the papers without p-values are relevant to the main text finding that 

higher ranking scores are linked to less robust p-values. Specifically, the multilevel regression 

predicting the fragile p-value percentage from university ranking (Supplemental Materials 10) 

was performed again after extrapolating the fragile p-value percentage for papers without p-

values. The extrapolation essentially assumes that all papers from the same journal and same 

year have similar robustness (e.g., strict journals will largely have strict standards across the 
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board). Hence, the fragile p-value percentage for papers with missing p-values was defined as the 

mean fragile p-value percentage of a given journal’s papers in the paper’s publication year. 

Using this dataset where some p-fragile percentages are extrapolated, the regression still yields a 

effect, whereby higher-ranking universities tend to report a higher percentage of fragile p-values 

in their papers (β = .015, p < .0001). 

11.5. Shifts away from null-hypothesis significance testing 

This analysis considers papers that employed Bayesian and/or machine learning methods. 

The analysis was done using 221,471 articles containing a Results section along with a SNIP 

score and an identified university (i.e., including many papers without a single p-value). Each 

paper’s Results section was searched for the presence of at one least Bayesian or machine 

learning keyword. The keywords are listed below and were generated manually and via 

prompting a large language model (Claude.ai) with “Please produce words you would expect to 

see in a Psychology paper using [Bayesian/machine learning] methods.” An initial list of words 

was pruned to remove non-specific terms – e.g., the word “prior” may also be used to simply 

refer to a sequence of events, or “model fit” is also regularly used in frequentist papers. This 

pruning was done by manually inspecting papers to see where a word was being regularly 

triggered outside of a Bayesian or machine learning context. 

This strategy generated the following Bayesian words (search was case-insensitive): 

Bayesian, information criterion, bayes, log-likelihood, credible interval, Markov chain 

Monte Carlo, Gibbs sampling, Metropolis-Hastings algorithm, hierarchical modeling, 

conjugate prior, information criterion, beta distribution, Dirichlet distribution, Gaussian 

distribution, Bayes factor, marginal likelihood, posterior distribution, No-U-Turn 

Sampler, Hamiltonian Monte Carlo, gaussian process, Kullback-Leibler, KL divergence, 

Jeffrey's prior, maximum a posteriori, variational inference, informative prior, posterior 

likelihood, convergence diagnostics, posterior odds, prior odds, posterior probability, 

prior probability 

The strategy generated the following Machine Learning words (again, case-insensitive): 

machine learning, deep learning, neural network, artificial intelligence, support vector 

machine, random forest, gradient boosting, xgboost, k-means clustering, k-nearest 

neighbors, principal component analysis, natural language processing, convolutional 

neural network, recurrent neural network, long short-term memory, gated recurrent unit, 

transformer network, autoencoder, generative adversarial network, unsupervised learning, 

supervised learning, semi-supervised learning, transfer learning, ensemble learning, 

hyperparameter tuning, confusion matrix, distributed stochastic neighbor embedding, t-

SNE, word embedding, ensemble methods, training set, test set, validation set, feature 

selection, f1 score, testing set, train set 

For each paper, dummy variables were defined, baye_paper and ML_paper, representing 

whether the paper contained at least one Bayesian or machine learning word, respectively. 

Overall, 3.8% of papers with a Results section contained at least one Bayesian word, and 2.0% 

contained at least one machine-learning word.5 To assess how such papers changed in frequency 

 
5 For reference, producing frequentist keywords and evaluating their frequency yielded at least one hit for 52.1% of 

papers with a Results section (see released repository code for those keywords). 
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over time and how they are linked to the incentive predictors, multilevel logistic regressions 

were tested, mirroring the multilevel linear regressions from the main text analyses. The R-style 

equations are as follows: 

baye_paper ~ 1 + SNIP × year + citations × year + ranking score × year + 

(1 + SNIP | journal) + (1 | school) + (1 | country) 

ML_paper ~ 1 + SNIP × year + citations × year + ranking score × year + 

(1 + SNIP | journal) + (1 | school) + (1 | country) 

Bayesian papers became more frequent over time (standardized β = .43, p < .0001). Also, 

over time, Bayesian papers started to be published in higher reputation journals (SNIP x Year 

interaction: β = .06, p = .0001; insignificant SNIP main effect: β = .04, p = .33). Bayesian papers 

may receive fewer citations (β = -.03, p = .01); note that this weak effect does not cross the  

α = .001 threshold mentioned in the main text, although for these analyses, statistical power is 

much weaker given that the number of Bayesian papers is fairly small. Bayesian papers may also 

be more likely to be published by authors from high-ranked universities (β = .06, p = .004), 

although this result again does not cross the α = .001 threshold. The interaction effects between a 

paper’s publication year and citations or university ranking were insignificant (ps > .04). 

Regarding machine learning papers, these have also become more frequent over time  

(β = .17, p < .0001) and have begun to be published in higher journals (SNIP x Year interaction: 

β = .12, p < .0001; insignificant SNIP main effect: β = .05, p = .06). Machine learning papers 

receive more citations (β = .12, p < .0001). There was no significant effect of ranking score  

(β = .03, p = .13), although note that this is after top-university authors being more likely to 

publish in high journals and receive many citations is accounted for. The interaction effects 

between a paper’s publication year and citations or ranking were insignificant (ps > .08). 

Figure S8 plots the relationship between a university’s ranking and the percentage of its 

papers that include Bayesian or machine learning keywords. For this, the journal and citation 

effects are no longer accounted for, explaining why positive trends appear in the figure even 

though the prior multilevel regression yielded an insignificant link between machine-learning 

papers and ranking. 
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Figure S8. Linking university ranking and a tendency to publish papers with Bayesian statistics or 

machine learning. Reported coefficients reflect Spearman correlations. 

Given that top universities are particularly likely to publish Bayesian and machine-learning 

papers, it is worth considering whether this is relevant to the association between fragile p-values 

and ranking described in the main text. To investigate this possibility, the ranking two new 

variables were defined at the university level: school_M_baye and school_M_ML. These 

correspond to the percentage of papers containing a Results section from a given university that 

included a Bayesian or machine-learning term, respectively; all papers from a given university 

are assigned the same prop_Bayesian value and the same prop_machine_learning value. Then, 

the multilevel regression predicting p-values from university rankings (Supplemental Materials 

10) was updated to incorporate these new variables: 

p_fragile_percentage ~ 1 + ranking score × year + 

has_baye + ML_paper + school_M_baye + school_M_ML + 

(1 | journal) + (1 | school) + (1 | country) 

In this context, the baye_paper and ML_paper variables may be 1 if a paper reporting p-values 

also includes a Bayesian or machine learning term in their Results. The regression found that 

these types of papers that mix p-values with Bayesian/machine-learning methods tend to have 

fewer fragile p-values (baye_paper: β = -.13, p < .0001, ML_paper: β = -.20, p < .0001). 

However, school_M_baye and school_M_ML were not significant predictors (ps > .44), meaning 

that university-level shifts toward these methods have little impact on papers’ p-values. 

Accordingly, the effect of rankings on fragile p-values remained significant (β = .017,  

p = .0003). Indeed, the coefficient hardly changed (original: β = .016), suggesting that even if the 

employed keywords do not entirely capture papers using Bayesian or machine-learning 

techniques, then a more refined approach would nonetheless yield similar results. These small 

effects may be because, overall, Bayesian and machine-learning papers remain a fairly small 

minority of the psychological literature, and university-level differences remain nominally slight 

(see Figure S8 and note that the median ranking across all papers is #192; it is not #500.5 

because higher ranked universities produce more papers). 

 

12. Further details on the text extraction 
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12.1. Sentence extraction 

Text analysis investigated the sentences preceding or surrounding reported significant p-

values. For example, a paper’s Results section may contain the following three sentences: 

“The conditions yielded different ratings (F[3, 50] = 5, p < .01). The first condition’s 

ratings were above-baseline (t = 2.1, p = .04), which was interesting. This study is not real.” 

The employed scripts attempted to extract one sentence for each of the two p-values reported. For 

the first p-value, the extracted sentence would be: “The conditions yielded different ratings”. For 

the second p-value, the extracted sentence would be: “The first condition’s ratings were 

abovebaseline which was interesting” (non-letter characters, such as hyphens, were removed; 

“abovebaseline” is not a typo). Sentence extraction was implemented by scanning 512 characters 

before and after p-values for the presence of periods while ignoring numbers/decimals, 

parentheticals, and the word “Fig.”. Not every sentence could be parsed (see Supplemental 

Materials 12.2), and in many cases, parsing may not have exactly identified the true sentence 

surrounding a p-value (e.g., due to abbreviations). Nonetheless, every extracted sentence 

necessarily represents the words near reported p-values, and a failure to parse some sentences was 

expected to only be a source of noise and not a bias because the analysis never compared 

frequencies between words. 

Each extracted sentence was split into words, and for each of the 2500 most common 

words, normalized usage scores were calculated for each paper. This score was calculated by 

counting how many of the paper’s sentences a word appeared in and dividing by the total number 

of top-2500 words across all the paper’s sentences. For example, if a paper included one 8-word 

sentence containing the word “the” and one 12-word sentence containing the word “the”, then the 

paper’s “the” score would be 2 / 20 = 0.1. After calculating these scores, a separate linear 

regression was fit for each word predicting its usage on the paper’s fragile p-values, as described 

in the main text. 

12.2. Sentence quantities 

By looking at different types of statistics, this permits insight into a wider range of results. 

For the analysis of a specific statistic type, the fragile p-value percentage used in the regression 

was computed based solely on the p-values associated with said statistic (e.g., when evaluating t-

value word usage, only the p-values nearby t-values are used for calculating the fragile percentage). 

In total, the dataset contains significant p-values reported alongside 434k t-values (with or without 

degrees of freedom). After dropping sentences that could not be parsed and discarding repeat 

sentences, there remained 201k usable sentences. Similarly, there were 932k F-value entries 

yielding 437k usable sentences, 142k chi-square entries yielding 68k usable sentences, and 298k 

correlation/regression (r/b/B/β) entries yielding 132k sentences. Note that statistics selected in 

these cases were not required to be reported with degrees of freedom. For the analysis of all p-

values, irrespective of one specific test statistic, there were 1.67M usable sentences. 
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13. Analysis with implied p-values 

13.1. Implied p-values also strongly predict replicability 

Among the 113 papers in the dataset with replicability data, 99 provided test statistics for 

calculating implied p-values (47 successful replications and 52 conclusive failures). There was a 

significant difference in the fragile implied p-value percentage between the 47 papers that 

replicated (M = .31, SE = .04) and those that did not (M = .48, SE = .04) (t[98] = 3.02, p = .003, 

d = .61; Figure S9); note that this effect does not cross the α = .001 threshold mentioned in the 

main text, but the sample size here is just 99 papers. In addition, a classifier fit using the same 

strategy as in Supplemental Materials 7.3 yielded a cross-validation accuracy of 63.4%. 

 
Figure S9. Reproduction of Figure S5 using implied p-values. This figure reproduces Figure S5 while 

now calculating the fragile percentage using p-values implied from test statistics. Each dot represents the 

fragile implied p-value percentage for one paper and whether the paper replicated or not. The dashed line 

at 34% represents the cutoff for whether a paper has over or under a 50% chance to replicate given its 

fragile p-value percentage, as identified using a logistic regression. The red “32.7%” indicates that 32.7% 

of papers above the dashed line did not replicate. Accordingly, the green “62.0%” indicates that 62.0% of 

papers below the dashed line replicated. 
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13.2. Implied p-value gap 

 In the main text, Figure 2 shows a clear difference between the mean percentage of 

fragile p-values and the mean percentage of fragile implied p-values (i.e., p-values inferred from 

nearby test statistics). Figure S10A plots the exact difference between those main text lines. 

Additionally, Figure 10B represents this comparison while only considering papers for which 

implied p-values can be computed – i.e., accounting for a selection bias related to many papers 

reporting p-values but not test statistics. For the most part, Figure 10B shows a smaller gap than 

Figure 10A, suggesting that some of the differences seen can be explained by selection effects. 

That is, papers that tend to report more robust p-values are more likely to report test statistics. 

When these selection effects are accounted for, Figure 10B suggests that there is roughly a 2% 

gap between fragile p-values and fragile implied p-value percentages. Before 2010, the 

differences were larger for some subjects, but this time period was associated with fewer papers 

and a smaller pool of usable journals, meaning that the differences may be noise and/or non-

generalizable. 

 

Figure S10. Differences between mean fragile p-value and fragile implied p-value percentages. A. 

These lines reflect the difference between the lines of main-text Figures 2A and 2B. Note that many of the 

papers reporting fragile p-values do not report any test statistics, and thus different papers contribute to 

each side of this difference. The shaded interval represents one standard error for a comparison between 

two samples. B. These lines reflect comparisons between fragile p-value percentages and implied fragile 

p-value percentages among only papers that report at least one test statistic and thus for which implied p-

values can be computed. The shaded intervals now represent one standard error for a paired comparison; 

this notably causes the errors to become tighter than in the A plot. 
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13.3. P-values and incentives 

The multilevel regressions used for the main text analysis were also done while 

calculating papers’ fragile percentages using implied p-values. The effect of fragile p-values on 

citations remains significant (β = -.03, p < .0001), although the fragile p-values x Year 

interaction effect on citations falls below α = .001 significant threshold (β = -.03, p = .005). The 

link between fragile p-values x Year and SNIP also shows a trend but falls below the 

significance threshold (β = -.046, p = .005). The link between university ranking scores and 

fragile p-values remains robust (β = .016, p = .0007). Note that although some links fell to 

insignificance (per α = .001), the analysis of implied p-values uses a dataset that contains just 

about half as many papers (86k) as what was used for the analysis of p-values. In addition, the 

individual paper estimates become less reliable as there are fewer p-values used. Hence, the 

weakening of the associations below an α = .001 threshold is not taken to challenge the main text 

conclusions. 

 

Figure S11. Reproduction of main text Figure 5 using implied p-values. This figure reproduces Figure 

5 from the main text but now while calculating the fragile percentage using p-values implied from test 

statistics. See the Figure 3 caption in the main text. Note that the number of journals and universities 

plotted here is less than in Figure 3 because fewer papers report test statistics than report p-values. Hence, 

the exclusion criteria (requiring at least 10 papers and a standard error of the mean p-fragile percentage 

that is under .04) led to more drops. 
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14. Language-use-overlap tables for university ranking and p-value effects 
 

Words linked fewer fragile p-values and to lower-ranked universities  

machiavell. entreprene. cyberbully. procrastin. dark narcissism pillais 

trace innovation bartletts swb passion alexithymia hope 

kmo burnout sphericity lambda has adequacy discrimina. 

kaisermeye. adaptabili. organizati. wilk usefulness factorial exhaustion 

theoretical wilkss national resilience autonomy confirmato. satisfacto. 

homogeneity capital bullying leadership obtained sem dimension 

dissatisfa. normality explaining workplace according career beside 

onefactor mediating adequate construct victimizat. manova intrinsic 

invariance brand problematic internet acceptable path threefactor 

multivaria. profession. pearsons bootstrap respective sampling intention 

goodnessof. influence hypothesis supervisor direct measurement structural 

supported loading step online psychologi. teacher convergent 

employee directly accounted value job proposed chisquare 

can follow partially solution satisfacti. excellent standardiz. 

impact good statistic indirect academic mediation ranged 

covid engagement student mediator index therefore table 

motivation profile mindfulness finally variable through indicate 

equation latent lastly show assumption relationsh. explained 

fit hierarchic. indicator coefficient work variance medium 

trust dependent moreover factor are personality positive 

positively furthermore descriptive criterion perception correlation subscale 

support attitude considered indicated grade predictive moderate 

related datum its test hypothesi very five 

suggested based well total life model scale 

figure second regression predictor social factors item 

shown sample and the that   

Table S2. Words associated with fewer fragile p-values and with lower-ranked universities. Much like for 

Table 1 in the main text , the words listed here represent words showing significant associations for both 

fragile p-values an university rankings in a regression (word usage ~ 1 + fragile p-value percentage + 
ranking). Also like Table 1, the present table seeks to shed light on the association reported in the main text 

wherein higher-ranked universities tend to produce papers with more fragile p-values. However, unlike main-

text Table 1, here the focus is on words used less by authors from top universities and which are linked to 

fewer fragile p-values. Long words that have been cut off to fit into the table end with “.”. All of the tables 

below follow this same structure mirroring Table 1. For all of the language overlap tables, a small number of 

words associated with specific nationalities have been omitted. 
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Words linked fewer fragile p-values and to higher-ranked universities  

perceiver judged judgments lag policy human character 

united midpoint varied greatest true estimate above 

moral feature prevalence much adult random majority 

across similarity average worse person rating relatively 

could slightly even better my expected improved 

confirmed again still belief including strongly similar 

highly most study each these this from 

were       

Words linked more fragile p-values and to lower-ranked universities  

dog serum muscle con regarding balance moderation 

regard statistical tukey marital women nonsignifi. exercise 

stage significan. product experiment. difference moderated betweengro. 

posthoc except female significant girl emerged between 

family level sex found analysis group  

Table S3. Word usage linked to rankings but inconsistent with identified rankings-p-values link. The 

words here were identified by searching for overlap in significance, much like for main-text Table 1 and Table 

S2, but now the words represent trends that run counter to the identified link between rankings and fragile p-

values shown in the main-text regression analysis. That is, the words in the top half of the table are more so 

used by authors at top-ranking universities and linked to less fragile p-values. The words in the bottom half are 

less used by authors at top-ranking universities and are linked to more fragile p-values. 
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15. Language-use-overlap tables for p-value and year effects 

 

Words liked to fewer fragile p-values and are more frequent in recent years 

covid entreprene. conspiracy smartphone meanwhile resilience cyberbully. 

passion innovation burnout loneliness autoregres. kmo mediating 

addiction heterogene. government machiavell. authentici. adaptabili. humor 

online capital engagement metric mindfulness profile customer 

problematic mobile normality creativity medium has bartletts 

configural employee impact bootstrap fixed psychologi. directly 

pooled safety climate direct exhaustion positively dark 

science academic gratitude phone ethical sense hope 

procrastin. invariance moral brand trust mathematics intrinsic 

swb through political love narcissism sphericity sem 

excellent violated economic indirect motivation leadership vehicle 

autonomy pathway generalized accordingly moderate maltreatme. according 

acceptable positive moreover bullying mediation adequacy figure 

random class dataset latent intention career victimizat. 

loaded descriptive work suggest unconditio. suggested socioecono. 

perceived intercept weakly turn student resource environmen. 

hypothesis ideation shown life table sampling adequate 

path predictive occupation. show adding structural confirmato. 

subjective organizati. weaker satisfacti. model assumption environment 

study national estimated null coefficient relationsh. social 

good support value identity prevalence measurement pearsons 

distress suicidal based achievement country standardiz. size 

similarly could indicator its stronger full school 

including robust influence large highest community likewise 

next person dimension confidence supported loading fit 

average index can belief are hypothesi slightly 

that test related finally and   

Table S4. Words associated with fewer fragile p-values that have become more frequent over time. See 

the main-text Table 1 and supplemental materials Table S2 captions for details. 

 

  



     Supplemental Materials        28 

Words liked to more fragile p-values and are less frequent in recent years 

bipolar restraint subject montholds caucasian depressed obese 

primed smoking drink prime abstinence priming quit 

experiment. twotailed episode looked drug planned genotype 

novel her administra. verb latency consumed made 

ethnicity subtest mood stories threeway overweight hsd 

cause attempt either recall infant onset meal 

presentati. unrelated pretreatme. weight object muscle whereas 

movement familiar cortisol emerge eat angry medication 

differ intake lifetime slower substance did lsd 

span history salience girl placebo fruit longer 

fearful previously fishers mannwhitney took completer possible 

patient look main none preference interacted event 

peak separately exception trial woman twoway contrast 

pair energy looking performed number response neutral 

chose ancova than they face tukey emerged 

continued site diagnosis reaction inversely delay questionna. 

only month read bmi happy sex cue 

followup times reached out fewer report more 

percentage choice revealed versus prior days analysis 

problem period received condition one interaction task 

female younger group treatment mothers status less 

not however significan. rate their over likely 

posthoc performance children control there age greater 

comparison difference significan. score significant  

Table S5. Words associated with more fragile p-values that have become less frequent over time. See the 

main-text Table 1 and supplemental materials Table S2 captions for details. 
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Words liked to more fragile p-values and are more frequent in recent years 

connectivi. moderation selfregula. regarding multivaria. moderated gyrus 

postinterv. additional. con learner caregiver spring sleep 

unadjusted interventi. inhibitory association obesity rsa roi 

skills parenting household associated team executive pupil 

brain exercise band adjusting working probing specifical. 

tau expressive balance pairwise helping post marginal 

interactive count vocabulary driven listening observed favor 

diversity caregivers asd odds product adherence education 

message actor term symptom subgroup negative adhd 

such fluency threshold identified compared risk increases 

language decreased sensitivity lower increase externaliz. exhibited 

showing right exposure amplitude higher left covariate 

power experienced parents outcome maternal state level 

bias found family after decrease baseline had 

with activity simple increased between time participant 

Words liked to fewer fragile p-values and are less frequent in recent years 

quite testretest entered selfesteem wilkss clearly highly 

increment manova wilk important anovas lambda yielded 

discrimina. pure rejected equation chisquare youngest criterion 

spelling computed simultaneo. considerab. zeroorder set rater 

equally produced yielding scale intercorre. somewhat judgments 

beyond accounted once multivaria. obtained attraction substantia. 

judged clear revised weights these zero again 

function delinquency dependent resulting because modified much 

equivalent step actual measure together rating confirmed 

form criterium justice respective. variance twofactor reason 

account this six similarity almost commitment expected 

subscale answer culture contributed calculated most validity 

four even latter five mean first item 

resulted each initial above hierarchic. second third 

three respondent personality additional for strongly were 

different hypothesiz. both overall better other variable 

factor similar also was the   

Table S6. Word patterns inconsistent with the decrease in fragile p-values over time. See the 

supplemental materials S3 caption for details. 
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16. Language-use-overlap tables for p-value and journal SNIP effects 

 

Words liked to fewer fragile p-values and higher SNIP journals  

heterogene. withinpers. usefulness innovation pooled cyberbully. online 

customer internet leadership weighted secondorder autoregres. political 

supervisor mobile employee smartphone perceiver environmen. improve 

policy mathematics supported study climate investment trust 

achievement hypothesis medium authentici. fourfactor capital vehicle 

size estimate weaker science random intercept substantia. 

hypothesi substantial organizati. creativity united ethical maltreatme. 

my party job instrument phone judgments tend 

consumer safety has somewhat proposed nonetheless threefactor 

stronger career onto brand alternative simultaneo. engagement 

fixed cohort view robust dataset moral hypothesiz. 

influence resource environment constrained intention suggest work 

provide autonomy respective judged norms example similarity 

perceived next impact confidence turn worse teacher 

varied majority prevalence source across estimated shown 

profile path mediated class latent support grade 

again indicate provided show thus related even 

indirect initial through much large average better 

produced its above are positive relationsh. this 

similar which expected moderate student including slightly 

perception coefficient fit strong social datum positively 

model that overall    

Table S7. Words associated with fewer fragile p-values that are also associated with higher SNIP 

journals. See the main-text Table 1 and supplemental materials Table S2 captions for details. 
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Words liked to more fragile p-values and lower SNIP journals  

con restraint dog cigarette abstinence exercise dietary 

heavy subtest smoking eat muscle obese bmi 

rat dose motor father caucasian consumed intake 

hiv overweight alcohol feeding quit hunger meal 

arm fat pre weight drink snack substance 

coordinati. fruit food obesity drug consumption taste 

pain paternal posthoc attentional attendance mother hsd 

parenting fathers childs inversely selfreport. span mannwhitney 

adherence peak impulsivity score caregivers amplitude marital 

ethnicity twoway parents movement reaction mothers session 

sex questionna. days happy bdi incongruent parent 

care lifetime healthy maternal female median woman 

family medication phase delay group betweengro. tukey 

duration asd difference shorter girl main having 

area reached neutral sleep statistical cue face 

followup physical patient symptom characteri. frequency education 

regard faster pairwise problem higher during baseline 

significant observed there compared only age comparison 

lower revealed after reported significan. with  

Table S8. Words associated with more fragile p-values that are also associated with lower SNIP 

journals. See the main-text Table 1 and supplemental materials Table S2 captions for details. 
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Words liked to more fragile p-values and higher SNIP journals  

bar computer diversity team elaboration montholds looked 

verb moderated novel learner saw bilingual spring 

composition primed asymmetry game gesture efficiency read 

remission moderation reliable subgroup comprehens. connectivi. interactive 

infant message consistent look expressed vocabulary prime 

interact effective rather later dyad chose reactivity 

money matched looking production bias performance mdd 

gaze feedback prior outcome immediate took word 

exposure choose object became product larger earlier 

region assigned whether threeway increases driven condition 

planned receiving interacted preference did qualified relative 

versus presence either received remained spent they 

power experienced exhibited when longer reduced such 

contrast over risk children participant less but 

trial more interaction greater control than  
Words liked to fewer fragile p-values and lower SNIP journals  

variablesf. perfection. bartletts kmo kaisermeye. subscale swb 

wilkss sphericity normality hope lambda adequacy testretest 

alexithymia mindfulness gambling pearson wilk burnout dark 

resilience configural onesample factorial step scale life 

responsibi. convergent pillais validity trace discrimina. accounted 

total profession. bootstrap manova bullying version disability 

multivaria. dissatisfa. pearsons reliability assumption college health 

obtained correlated school five correlation internal contributed 

hierarchic. factors explained component lowest together predictive 

dimension figure equation standardiz. index highest variance 

variable regression psychologi. added factor presented according 

satisfacti. final demonstrat. were mean indicated predictor 

three addition other all    

Table S9. Word patterns inconsistent with the inverse relationship between fragile p-values and journal 

SNIP. See the supplemental materials S3 caption for details. 
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17. Language-use-overlap tables for p-value and citation effects 

 

Words linked fewer fragile p-values and to more citations 

conspiracy usefulness heterogene. smartphone addiction pooled internet 

mobile cyberbully. innovation adaptabili. leadership environmen. online 

weighted customer covid phone ethical procrastin. exhaustion 

burnout employee climate bullying resilience gratitude brand 

pandemic capital trust creativity narcissism workplace organizati. 

engagement job vehicle mediated secondorder problematic intention 

study big prevalence homogeneity loneliness proposed adoption 

entreprene. mindfulness structural authentici. fourfactor has mathematics 

machiavell. career size intrinsic internaliz. dark supervisor 

hypothesis substantial mediating alexithymia achievement medium path 

science ideation work influence supported suicidal construct 

hypothesiz. government mediator sem indirect criterium simultaneo. 

mediation fits teacher constrained safety country constraini. 

satisfacti. stronger direct impact dissatisfa. measurement support 

revised yielding robust autonomy victimizat. resource need 

academic satisfacto. substantia. environment behavioural social partially 

weaker onefactor directly explain equation alternative psychologi. 

related fit loading residual excellent maltreatme. indicator 

political strongest through motivation well fitted hypothesi 

strongly pathway moral life latent respective statistic 

good relationsh. tested willingness positively standardiz. perceived 

my turn explained distress adequate adding measure 

student worse accounted datum acceptable together added 

model provided show slightly moderate estimate improved 

finally attitude positive belief suggest coefficient very 

indicate predictor sample additional still grade variance 

shown large moreover school health five including 

table general similarly yielded overall regression variable 

are which this correlated all from that 

Table S10. Words associated with fewer fragile p-values that are also associated with more citations. See 

the main-text Table 1 and supplemental materials Table S2 captions for details. 
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Words linked more fragile p-values and to fewer citations 

con abstinence cue priming electrode amplitude movement 

hiv rat presentati. alliance quit smoking pair 

abstract twoway incongruent genotype shorter prime faster 

spouse red offer recall interferen. subtest pain 

object hsd reaction central occurrence main father 

delay drug latency threeway inattention phase slower 

response trial posthoc peak partner unrelated caregiver 

pairwise caregivers fast duration tukey mannwhitney reached 

attended substance neutral side childs median visual 

viewing drink mother window instruction session alcohol 

betweengro. member stage attentional temporal face memory 

race simple expression reach task condition mothers 

rate performed times choice statistical percentage made 

interaction care preference members right area observed 

qualified revealed longer there experiment. comparison difference 

number parents group following frequency baseline than 

participant score likely significant compared lower however 

their analysis higher only    

Table S10. Words associated with more fragile p-values that are also associated with fewer citations. See 

the main-text Table 1 and supplemental materials Table S2 captions for details. 
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Words linked more fragile p-values and to more citations 

asymmetry bilingual monolingual remission hamd computer mdd 

connectivi. diversity product game moderation tau subgroup 

completer moderated dropout balance responder interventi. secondary 

eat ancovas clinically posttreatm. spent depressed asd 

infant sleep reduction post team looked bar 

composite reduced food outcome increases exposure controlling 

engaged parenting later home experienced girl remained 

working disorder looking out use presence improvement 

reported physical language activity control symptom consistent 

change performance did associated but with  
Words linked fewer fragile p-values and to fewer citations 

perceiver lag auc tablethe normality violated kmo 

onesample sphericity validity kaisermeye. character adequacy answer 

consistency convergent agreement disability bartletts responsibi. judged 

pearsons midpoint rejected version item assumption reliability 

judgments pearson scenario lowest rating presented figure 

different factors mean subscale test scale were 

was the      

Table S12. Word patterns inconsistent with the inverse relationship between fragile p-values and 

citations. See the supplemental materials S3 caption for details. 

 


